python machine learning cookbook chris albon

Read about python machine learning cookbook chris albon, The latest news, videos, and discussion topics about python machine learning cookbook chris albon from alibabacloud.com

Machine learning tool scikit-learn--data preprocessing under Python

data.X = [[1.,-1., 2.], [2., 0., 0.], [0.,1.,-1.]] Binarizer= preprocessing. Binarizer (). Fit (X)#The default threshold value is 0.0PrintBinarizer#Binarizer (copy=true, threshold=0.0)Printbinarizer.transform (X)#[1.0. 1.]#[1.0. 0.]#[0.1. 0.]Binarizer= preprocessing. Binarizer (threshold=1.1)#set the threshold value to 1.1Printbinarizer.transform (X)#[0.0. 1.]#[1.0. 0.]#[0.0. 0.]4. Label preprocessing (label preprocessing)4.1) Label binary value (label binarization)Labelbinarizer is typica

Machine learning Combat Logistic regression Python code

-0.576525 11.778922 0-0.346811-1.678730 1-2.124484 2.672471 11.217916 9.597015 0-0.733928 9.098687 0-3.642001-1.618087 10.315985 3.523953 11.416614 9.619232 0-0.386323 3.989286 10.556921 8.294984 11.224863 11.587360 0-1.347803-2.406051 11.196604 4.951851 10.275221 9.543647 00.470575 9.332488 0-1.889567 9.542662 0-1.527893 12.150579 0-1.185247 11.309318 0-0.445678 3.297303 11.042222 6.105155 1-0.618787 10.320986 01.152083 0.548467 10.828534 2.676045 1-1.237728 10.549033 0-0.683565-2.166125 10.229

Software--machine learning and Python, clustering, K--means

Citycluster[label[i]].append (Cityname[i]) #将每个簇的城市输出For I in range (len (citycluster)):Print ("expenses:%.2f"% expenses[i]) #将每个簇的平均花费输出Print (Citycluster[i])Click to run, you can come out results.Where the N_clusters class, the consumption level of similar cities gathered in a classExpense: The numerical plus of the central point of the cluster, that is, the average consumption levelImplementation process:1, establish the project, import Sklearn related packageImport NumPy as NPFrom Sklearn.cl

NBC naive Bayesian classifier ———— machine learning actual combat python code

)]=1 else:print "The word:%s is not in my vocabulary!" %word return returnvecdef TRAINNBC (trainsamples,traincategory): Numtrainsamp=len (Trainsamples) NumWords=len (train Samples[0]) pabusive=sum (traincategory)/float (numtrainsamp) #y =1 or 0 feature Count P0num=np.ones (numwords) P1NUM=NP.O NES (numwords) #y =1 or 0 category count P0numtotal=numwords p1numtotal=numwords for I in Range (Numtrainsamp): if Traincategory[i]==1:p0num+=trainsamples[i] P0numtotal+=sum (Trainsamples[i]) E

Python vs machine learning-data preprocessing

attribute in the data set. The general situation is somewhere between the two.D. High-dimensional mappingMap properties to high-dimensional space. This is the most precise approach, which completely retains all the information and does not add any additional information. For example, Google, Baidu's CTR Prediction model, pre-processing will be all the variables to deal with this, up to hundreds of millions of dimensions. The benefit of this is that the entire information of the original data is

The linear regression of Python machine learning

=linearr.predict (X_train) #基于训练集得到的线性y值Plt.figure ()Plt.scatter (x_train,y_train,color= ' green ') #原始训练集数据散点图Plt.plot (x_train,y_train_pred,color= ' black ', linewidth=4) #线性回归的拟合线Plt.title (' Train ') #标题Plt.show ()Y_test_pred=linearr.predict (X_test)Plt.scatter (x_test,y_test,color= ' green ') #绘制测试集数据散点图Plt.plot (x_test,y_test_pred,color= ' black ', linewidth=4) #基于线性回归的预测线Plt.title (' Test ')Plt.show ()Print (' mse= ', Sm.mean_squared_error (y_test,y_test_pred)) #MSE值Print (' r2= ', Sm.r2_

Python numpy machine Learning Library Use example

Installation sudo yum install NumPy From numpy Import * Produces an array Random.rand (4,5) Result Array ([[0.79056842, 0.31659893, 0.34054779, 0.97328131, 0.32648329], [0.51585845, 0.70683055, 0.31476985, 0.07952725, 0.80907845], [0.81623517, 0.61038487, 0.66679161, 0.77412742, 0.03394483], [0.41758993, 0.54425978, 0.65350633, 0.90397197, 0.72706079]]) Produce a matrix >>> Randmat=mat (Random.rand (bis)) >>> randmat.i Matrix ([[[1.72265179, 0.82071484, 0.8218207,-3.20005387], [0.60602642,-1.28

Machine learning Path: Python naive Bayesian classifier Predictive news category

Misc.forsale 0.91 0.70 0.79 257 the Rec.autos 0.89 0.89 0.89 238 - Rec.motorcycles 0.98 0.92 0.95 276 - Rec.sport.baseball 0.98 0.91 0.95 251 the Rec.sport.hockey 0.93 0.99 0.96 233 the Sci.crypt 0.86 0.98 0.91 238 the sci.electronics 0.85 0.88 0.86 249 the sci.med 0.92 0.94 0.93 245 - sci.space 0.89 0.96 0.92 221 the Soc.religion.christian 0.78 0.96 0.86 232 the talk.politics.guns 0.88 0.96 0.92 251 the talk.politics.mideast 0.90 0.98 0.94 23194 Talk.politics.misc 0.79 0.89 0.84 188 the Talk.r

The way of the rookie--nonlinear regression of machine learning personal understanding and Python implementation

:", X) - Print("Y:", Y) - innumiterations=100000 -alpha=0.0005 toTheta=np.ones (x.shape[1]) +Theta=graientdescent (x,y,theta,alpha,x.shape[0],numiterations) - Print(Theta)Operation Result:...... Too many output data to intercept only the next more than 10 linesIteration 99988/cost:3.930135Iteration 99989/cost:3.930135Iteration 99990/cost:3.930135Iteration 99991/cost:3.930135Iteration 99992/cost:3.930135Iteration 99993/cost:3.930135Iteration 99994/cost:3.930135Iteration 99995/cost:3.930135Iterat

Machine learning python combat----linear regression

* (XMAT.T * (Weights *Ymat)) returnTestPoint *SigmadefLwlrtest (Testarr,xarr,yarr,k = 1.0): M=shape (Testarr) [0] Yhat=zeros (m) forIinchRange (m): Yhat[i]=LWLR (testarr[i],xarr,yarr,k)returnYhatThe LWLR () function is the code for locally weighted linear regression, and the function of the lwlrtest () function is to make the LWLR () function traverse the entire data set. We also need to draw a picture to see how the results fit. def PlotLine1 (testarr,xarr,yarr,k = 1.0 = Mat (Xarr) ymat = Ma

Python Machine Learning Toolkit Scikit-learn

Scikit-learn this very powerful Python machine learning ToolkitHttp://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.htmlS1. Import dataMost of the data is formatted as M n-dimensional vectors, divided into training sets and test sets. So, knowing how to import vector (matrix) data is the most critical point. We need to use NumPy to help. Suppose the d

"Machine learning" Python Quick Start notes

(file) # Open the previously saved code # File.close ()#或者自动关闭方案With open (' Pickle_exm.pickle ', ' RB ') as File:a_dic=pickle.load (file)30. Use set to find differentChar_list=[' A ', ' B ', ' C ', ' C ']print (set (char_list)) #使用set进行不同查找, output is a non-repeating sequence, sorted by hash sentence= ' Welcome to Shijiazhuang ' Print (set (sentence)) #可以分辨句子中的不同字母 and presented in a single form# 31, regular expressions (to be added)import Re #引入正则表达式pattern1 = "Cat" pattern2= ' dog ' string=

Machine learning path: Python linear regression linearregression, stochastic parametric regression sgdregressor forecast Boston rates

(Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) $ Print("the mean square error of the linear is:", Lr_mse) -Lr_mae =Mean_absolute_error (Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) - Print("the average absolute error of the linear is:", Lr_mae) - A #evaluation of the SGD model +Sgdr_score =Sgdr.score (x_test, y_test) the Print("the default evaluation value for SGD is:", Sgdr_score) -sgdr_r_squared =R2_score (y_test, sgdr_y_predict) $ Print("

Machine learning path: Python regression tree decisiontreeregressor forecast Boston Rates

regression tree is:", Dtr.score (X_test, y_test)) - Print("the r_squared values for the flat regression tree are:", R2_score (Y_test, dtr_y_predict)) - Print("the mean square error of the regression tree is:", Mean_squared_error (Ss_y.inverse_transform (y_test), - Ss_y.inverse_transform (dtr_y_predict))) A Print("the average absolute error of the regression tree is:", Mean_absolute_error (Ss_y.inverse_transform (y_test), + Ss_y.inverse_transform (dtr_y_predict))) the - " " $ the default evalua

The path of machine learning: Python polynomial feature generation polynomialfeatures and over-fitting

.score (X_train_poly2, Y_train))#0.9816421639597427Two-time linear regression model fitted curves:The fitting degree is better than 1 linear fitting.The following 4 linear regression models are performed:1 #four-time linear regression model fitting2Poly4 = Polynomialfeatures (degree=4)#4-time polynomial feature generator3X_train_poly4 =poly4.fit_transform (X_train)4 #Building Model Predictions5Regressor_poly4 =linearregression ()6 Regressor_poly4.fit (X_train_poly4, Y_train)7 #draw a graph of 2

Python Machine Learning Library sciki-earn practice, pythonsciki-earn

Python Machine Learning Library sciki-earn practice, pythonsciki-earn Use Anaconda's spyder: Create train_test.py #!usr/bin/env python #-*- coding: utf-8 -*- import sys import os import time from sklearn import metrics import numpy as np import cPickle as pickle reload(sys) sys.setdefaultencoding('utf8')

Machine learning Python implements Bayesian algorithm

: def textparse (bigstring): #正则表达式进行文本分割 import Re listoftokens = RE.SPL It (R ' \w* ', bigstring) return [Tok.lower () for Tok in Listoftokens if Len (tok) > 2] def spamtest (): docList = []; Classlist = []; fulltext = [] for I in range (1,26): #导入并解析文本文件 wordList = textparse (open (' E:/python Project/bayes/email/spam/%d.txt '% i). Read ()) Doclist.append (wordList) fulltext.extend (wordList) Classlist.append (1) wordList = textp

"Machine Learning Algorithm-python realization" PCA principal component analysis, dimensionality reduction

references: The reference is the low-dimensional matrix returned. corresponding to the input parameters of two.The number of references two corresponds to the matrix after the axis is moved.The previous picture. Green is the raw data. Red is a 2-dimensional feature of extraction.3. Code Download:Please click on my/********************************* This article from the blog "Bo Li Garvin"* Reprint Please indicate the source : Http://blog.csdn.net/buptgshengod***********************************

K Nearest Neighbor Algorithm python implementation--"machine learning Combat"

), 15.0*np.array (DatingLabels)) the #plt.show () - the #Unit test of Func:autonorm () the #Normmat, ranges, minvals = Autonorm (Datingdatamat) the #print (Normmat)94 #print (ranges) the #print (minvals) the the datingclasstest ()98Classifyperson ()Output:Theclassifier came back with:3, the real answer Is:3The total error rate is:0.0%Theclassifier came back with:2, the real answer Is:2The total error rate is:0.0%Theclassifier came back with:1, the real answer is:1The total error rate is:0.0%.

Machine learning Path: Python K-mean clustering Kmeans handwritten numerals

Python3 Learning using the APIUsing the data set on the Internet, I downloaded him to a localcan download datasets in my git: https://github.com/linyi0604/MachineLearningCode:1 ImportNumPy as NP2 ImportPandas as PD3 fromSklearn.clusterImportKmeans4 fromSklearnImportMetrics5 6 " "7 K-Mean-value algorithm:8 1 randomly selected K samples as the center of the K category9 2 from the K sample, select the nearest sample to be the same category as yourself,

Total Pages: 11 1 .... 7 8 9 10 11 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.