Read about python machine learning cookbook chris albon, The latest news, videos, and discussion topics about python machine learning cookbook chris albon from alibabacloud.com
-za-z]"," ", Sent.lower (). Strip ()). Split () in sentences.append (temp) - to returnsentences + - #The sentences in the long news are stripped out for training . thesentences = [] * forIinchx: $Sentence_list =news_to_sentences (i)Panax NotoginsengSentences + =sentence_list - the + #Configure the dimension of the word vector ANum_features = 300 the #the frequency of the words that are to be considered +Min_word_count = 20 - #number of CPU cores used in parallel computing $Num_workers =
#岭回归主要是弥补在数据中出现异常值时, improve the stability of linear model, that is, robustness robustImport Pandas as PDImport NumPy as NPImport Matplotlib.pyplot as PltFrom Sklearn import Linear_modelImport Sklearn.metrics as SM#直接拿最小二乘法数据Ridgerg=linear_model. Ridge (alpha=0.5,fit_intercept=true,max_iter=10000) #alpha nearer to 0, the more the ridge regression approached the linear regression.Ridgerg.fit (X_train,y_train) #训练模型Y_train_pred=ridgerg.predict (X_train) #模型y值Y_test_pred=ridgerg.predict (x_test) #模
Python Kmeans clustering is relatively simple, first requires the import NumPy, from the Sklearn.cluster import Kmeans module:Import NumPy as NP from Import KmeansThen read the TXT file, get the corresponding data and convert it to numpy array:X == open ('rktj4.txt') for in f: = Re.compile ('\s+') x.append ([Float (Regex.Split (v) [3]), float ( Regex.Split (v) [6= Np.array (X)Set the number of classes and cluster:N_clusters = 5= Kmeans (n_clust
Maximumlikelihood (p=w): H,t=defineparam () f1=factorial (h+t)/(factorial (H) *factorial (T)) f2= (p**h) * ((1.0-p) **t) return F1*F2 def factorial (x): return reduce (lambda x,y:x*y,range (1,x+1)) achieve the effect, corresponding to the above example, when h=49,t=31, is the probability of P=2/3 probabilitiesCode Address: Please click on my/********************************* This article from the blog "Bo Li Garvin"* Reprint Please indicate the sourc
It is mentioned in this series that using Python to start machine learning (3: Data fitting and generalized linear regression) mentions the regression algorithm for numerical prediction. The logical regression algorithm is essentially regression, but it introduces a logical function to help classify it. The practice found that the logical regression in the field
, or K nearest neighbor (Knn,k-nearestneighbor) classification algorithm, is one of the simplest methods in data mining classification technology. The so-called K nearest neighbor is the meaning of K's closest neighbour, saying that each sample can be represented by its nearest K-neighbor.The core idea of the KNN algorithm is that if the majority of the k nearest samples in a feature space belong to a category, the sample also falls into this category and has the characteristics of the sample on
!accuracy:87.07%******************* SVM ********************Training took3831. 564000s!accuracy:94.35%******************* GBDT ********************In this data set, because the cluster of data distribution is better (if you understand this database, see its T-sne map can be seen.) Since the task is simple, it has been considered a toy dataset in the deep learning boundary, so KNN has a good effect. GBDT is a very good algorithm, in Kaggle and other bi
Python3 Learning using the APIA sample of a data structure of a dictionary type, extracting features and converting them into vector formSOURCE Git:https://github.com/linyi0604/machinelearningCode:1 fromSklearn.feature_extractionImportDictvectorizer2 3 " "4 dictionary feature Extractor:5 pumping and vectorization of dictionary data Structures6 category type features vectorization with 0 12 values using prototype feature names7 numeric type features r
=true) # drop useless columns and create LABELSIDX = test.id.values.astype (int) test = Test.drop ([' id ', ' tube_assembly_id ', ' quote_date '), Axis = 1) labels = Train.cost.valuestrain = Train.drop ([' Quote_date ' , ' cost ', ' tube_assembly_id '], Axis = 1) # Convert data to NumPy Arraytrain = Np.array (train) test = Np.array (test)From:kaggle Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced. Ma
Efficiency comparison:It's a cliché, but this time with a new module,Run Time Test Module Timeti:1 ImportTimeit2 3normal = Timeit.timeit ('sum (x*x for x in range )', number=10000)4NATIVE_NP = Timeit.timeit ('sum (na*na)',#Repeating part5setup="import numpy as np; na = Np.arange (+)",#Setup runs only once6number=10000)#Number of repetitions7GOOD_NP = Timeit.timeit ('Na.dot (NA)',8setup="import numpy as np; na = Np.arange (+)",9number=10000)Ten One Print('Native Run time:', Normal,'\ n', A
90avg/total 0.82 0.78 0.79 329The accuracy of gradient tree boosting is 0.790273556231 Precision recall f1-score support 0 0.92 0.78 0.84 239 1 0.58 0.82 0.68 90avg/total 0.83 0.79 0.80 329Conclusion:Predictive performance: The gradient rise decision tree is larger than the random forest classifier larger than the single decision tree. The industry often uses the stochastic forest c
#数据预处理方法, mainly dealing with the dimension of data and the problem of the same trend.Import NumPy as NPFrom Sklearn Import preprocessing#零均值规范Data=np.random.rand (3,4) #随机生成3行4列的数据Data_standardized=preprocessing.scale (data) #对数据进行归一化处理, that is, each value minus the mean divided by the variance is primarily used for SVM#线性数据变换最大最小化处理Data_scaler=preprocessing. Minmaxscaler (feature_range= (0,1)) #选定区间 (0,1), raw Data-min/(max-min)Data_scaled=data_scaler.fit (data)#数据标准化处理normalizeddata_normaliz
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.