python machine learning cookbook chris albon

Read about python machine learning cookbook chris albon, The latest news, videos, and discussion topics about python machine learning cookbook chris albon from alibabacloud.com

The path of machine learning: The main component analysis of the Python feature reduced dimension PCA

the data after dimensionality reduction -Pca_svc =linearsvc () the #Learning - Pca_svc.fit (Pca_x_train, Y_train)WuyiPca_y_predict =pca_svc.predict (pca_x_test) the - #4 Model Evaluation Wu Print("accuracy of raw data:", Svc.score (X_test, y_test)) - Print("other ratings: \ n", Classification_report (Y_test, Y_predict, Target_names=np.arange (10). Astype (str ))) About $ Print("data accuracy rate after dimensionality reduction:", Pca_svc.score (Pca

Start machine learning with Python (3: Data fitting and generalized linear regression)

Prediction problems in machine learning are usually divided into 2 categories: regression and classification .Simply put, regression is a predictive value, and classification is a label that classifies data.This article describes how to use Python for basic data fitting, and how to analyze the error of fitting results.This example uses a 2-time function with a ra

Ubuntu Installation Python machine learning Package

1. Install Pipmkdir ~/vi ~/.pip/pip.conf[global]trusted-host=mirrors.aliyun.comindex -url=http://https://bootstrap.pypa.io/get-pip.pysudo python get---9.0. 1 from/usr/local/lib/python2. 7 2.7)2. Install the Machine learning PackageThe following installation package is not chaotic due to dependenciessudo Install sudo install sudo install sudo install scipyError:S

"Machine learning Combat" python implementation of text classifier based on naive Bayesian classification algorithm

============================================================================================ "Machine Learning Combat" series blog is Bo master reading " Machine learning Combat This book's notes, including the understanding of the algorithm and the Python code implementatio

Python machine learning: 5.6 Using kernel PCA for nonlinear mapping

as the similarity of two vectors.The commonly used kernel functions are: Polynomial cores: , which is the threshold value, is the index set by the user. Hyperbolic tangent (sigmoid) Cores: Radial basis function core (Gaussian core): Now summarize the steps of the nuclear PCA, taking the RBF nucleus as an example:1 compute the kernel (similarity) matrix K, which is the calculation of any two training samples:Get K:For example, if the training set has 10

Python Machine Learning decision tree

This article describes the python Machine Learning Decision tree in detail (demo-trees, DTs) is an unsupervised learning method for classification and regression. Advantages: low computing complexity, easy to understand output results, insensitive to missing median values, and the ability to process irrelevant feature

Python implementations of machine learning Algorithms (1): Logistics regression and linear discriminant analysis (LDA)

First of all, to collect ...This article is for the author after learning Zhou Zhihua Teacher's machine study material, writes after the class exercises the programming question. Previously placed in the answer post, now re-organized, will need to implement the code to take out the part of the individual, slowly accumulate. Want to write a machine

Python Automation Development Learning 12-Bastion Machine development

module. But this and the original SSH ratio is still not very stable, not very useful. Not suitable for production environments. To be useful or to change the native SSH, but we will not, we will only change Python. In short this chapter is to achieve a fortress machine function, really want to do a good thing to say later.The more famous is probably this: jumpserver-open-source Springboard machineLong con

"Python Machine Learning" notes (iv)

different features to the same interval: normalization and normalizationNormalization:From sklearn.preprocessing import MinmaxscalerStandardization:From sklearn.preprocessing import StandardscalerSelect a feature that is meaningfulIf a model behaves much better than a test data set on a training dataset, it means that the model is too fit for training data.The commonly used schemes to reduce generalization errors are:(1) Collect more training data(2) Introduction of penalty by regularization(3)

Python machine learning: 7.2 Voting with different classification algorithms

This section learns to use Sklearn for voting classification, see a specific example, the dataset uses the Iris DataSet, using only the sepal width and petal length two dimension features, Category we also only use two categories: Iris-versicolor and Iris-virginica, the standard uses ROC AUC.Python Machine learning Chinese catalog (http://www.aibbt.com/a/20787.html)Reprint please specify the source,

How to implement common machine learning algorithms with Python-1

Recently learned about Python implementation of common machine learning algorithms on GitHubDirectory First, linear regression 1. Cost function2. Gradient Descent algorithm3. Normalization of the mean value4. Final running result5, using the linear model in the Scikit-learn library to implement Second, logistic regression 1. Cost funct

Python Machine learning Case series Tutorial--LIGHTGBM algorithm

Full Stack Engineer Development Manual (author: Shangpeng) Python Tutorial Full solution installation Pip Install LIGHTGBM Gitup Web site: Https://github.com/Microsoft/LightGBM Chinese Course http://lightgbm.apachecn.org/cn/latest/index.html LIGHTGBM Introduction The emergence of xgboost, let data migrant workers farewell to the traditional machine learning algo

Python machine learning and practice PDF

: Network Disk DownloadContent Profile ...This book is intended for all readers interested in the practice and competition of machine learning and data mining, starting from scratch, based on the Python programming language, and gradually leading the reader to familiarize themselves with the most popular machine

Python machine learning and practice from scratch to the Kaggle Race road PDF

: Network Disk DownloadContent Profile ...This book is intended for all readers interested in the practice and competition of machine learning and data mining, starting from scratch, based on the Python programming language, and gradually leading the reader to familiarize themselves with the most popular machine

Installation of 64-bit Python under windows and installation of machine learning related packages (practical)

享平台来找到numpy, scipy and Matplotlib, Here are all. WHL files, which need to be installed via PIP, so there is an important preparation is easy_install pip to complete the PIP installation, after the installation is successful, it can be installed on the above three respectively. WHL for installation in Pip install **.py.5. Download the most important machine learning package: Scikit-learn, the package install

"Machine Learning in Python" (NumPy)

~1000Importtimeitnormal_py_sec= Timeit.timeit ('sum (x*x for x in Xrange ())', number= 1000) Naive_np_sec= Timeit.timeit ('sum (na*na)', Setup="Import NumPy as Np;na=np.arange (+)", number= 1000) Good_np_sec= Timeit.timeit ('Na.dot (NA)', Setup="import NumPy as NP; Na=np.arange (+)", number= 1000)Print("Normal Python:%f sec"%normal_py_sec)Print("Naive Python:%f sec"%naive_np_sec)Print("Good NumPy:%f sec"%go

Python machine learning: 6.6 Different performance evaluation indicators

In the previous chapters, we have been using the accuracy rate (accuracy) to evaluate the performance of the model, which is usually a good choice. In addition, there are many evaluation indicators, such as precision (precision), recall rate (recall) and F1 value (F1-score).Confusion matrixBefore explaining the different evaluation indicators, let's start by learning a concept: The confusion matrix (confusion matrix), which shows the matrix of the

[ML] machine learning, Python sites

ArticleDirectory Welcome to Deep Learning SVM Series Explore python, machine learning, and nltk Libraries 8. http://deeplearning.net/Welcome to Deep Learning 7. http://blog.csdn.net/zshtang/article/category/870505 SVD and LSI tutorial 6. http://blog.csdn.net/sh

Start machine learning with Python (7: Logistic regression classification)--GOOD!!

from:http://blog.csdn.net/lsldd/article/details/41551797In this series of articles, it is mentioned that the use of Python to start machine learning (3: Data fitting and generalized linear regression) refers to the regression algorithm for numerical prediction. The logistic regression algorithm is essentially regression, but it introduces logic functions to help

Some resources for Python data analysis and machine learning

https://github.com/search?l=Pythono=descq=pythons=starstype=Repositoriesutf8=%E2%9C% 93Https://github.com/vinta/awesome-pythonHttps://github.com/jrjohansson/scientific-python-lecturesHttps://github.com/donnemartin/data-science-ipython-notebooksHttps://github.com/rasbt/python-machine-learning-bookHttps://github.com/scik

Total Pages: 11 1 .... 7 8 9 10 11 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.