statistical learning coursera

Learn about statistical learning coursera, we have the largest and most updated statistical learning coursera information on alibabacloud.com

Python Learning Note--coursera

Someting about Lists mutation1 ###################################2 #Mutation vs. Assignment3 4 5 ################6 #Look alike, but different7 8A = [4, 5, 6]9b = [4, 5, 6]Ten Print "Original A and B:", A, b One Print "is they same thing?"+ F isb A -A[1] = 20 - Print "New A and B:", A, b the Print - - ################ - #aliased + -c = [4, 5, 6] +D =C A Print "Original C and D:", C, D at Print "is they same thing?"+ D isD - -C[1] = 20 - Print "New C and D:", C, D - Print - in ##############

Coursera Python Learning Summary

points of mini project are translated, Then translate the Mini project implementation steps, not a one-time full translation, take too long, the previous translation may forget, and the translation may not be accurate, and sometimes to see the original text. Complete a paragraph and translate the next paragraph, step by step. Do not translate all, some do not help to complete the task can not translate, save time. 4. Selective translation of code clinic,5. If you get stuck, search for keywords

[Machine Learning] Coursera ml notes-Logistic regression (logistic Regression)

IntroductionThe Machine learning section records Some of the notes I've learned about the learning process, including linear regression, logistic regression, Softmax regression, neural networks, and SVM, and the main learning data from Standford Andrew Ms Ng's tutorials in Coursera and online courses such as UFLDL Tuto

Stanford Coursera Machine Learning Programming Job Exercise 5 (regularization of linear regression and deviations and variances)

different lambda, the calculated training error and cross-validation error are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508The graphic is represented as follows:As

Coursera Machine Learning second week quiz answer Octave/matlab Tutorial

would the Vectorize this code to run without all for loops? Check all the Apply. A: v = A * x; B: v = Ax; C: V =x ' * A; D: v = SUM (A * x); Answer: A. v = a * x; v = ax:undefined function or variable ' Ax '. 4.Say you has a vectors v and Wwith 7 elements (i.e., they has dimensions 7x1). Consider the following code: z = 0; For i = 1:7 Z = z + V (i) * W (i) End Which of the following vectorizations correctly compute Z? Check all the Apply.

Coursera Machine Learning Study notes (12)

-Normal equationSo far, the gradient descent algorithm has been used in linear regression problems, but for some linear regression problems, the normal equation method is a better solution.The normal equation is solved by solving the following equations to find the parameters that make the cost function least:Assuming our training set feature matrix is x, our training set results are vector y, then the normal equation is used to solve the vector:The following table shows the data as an example:T

"Coursera-machine learning" Linear regression with one Variable-quiz

, i.e., all of our training examples lie perfectly on some straigh T line. If J (θ0,θ1) =0, that means the line defined by the equation "y=θ0+θ1x" perfectly fits all of our data. For the To is true, we must has Y (i) =0 for every value of i=1,2,..., m. So long as any of our training examples lie on a straight line, we'll be able to findθ0 andθ1 so, J (θ0,θ1) =0. It is not a necessary that Y (i) =0 for all of our examples. We can perfectly predict the value o

Coursera Machine Learning Study notes (10)

-Learning RateIn the gradient descent algorithm, the number of iterations required for the algorithm convergence varies according to the model. Since we cannot predict in advance, we can plot the corresponding graphs of iteration times and cost functions to observe when the algorithm tends to converge.Of course, there are some ways to automatically detect convergence, for example, we compare the change value of a cost function with a predetermined thr

Coursera Machine Learning Study notes (vi)

-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that will reduce the value of the cost function.We continue this process until a local minimum (

Ntu-coursera machine Learning: Noise and Error

, the weight of the high-weighted data is increased by 1000 times times the probability, which is equivalent to replication. However, if you are traversing the entire test set (not sampling) to calculate the error, there is no need to modify the call probability, just add the weights of the corresponding errors and divide by N. So far, we have expanded the VC Bound, which is also set up on the issue of multiple classifications!SummaryFor more discussion and exchange on machine

Coursera Machine Learning second week programming job Linear Regression

use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_iters,1); forITER =1: Num_iters% ======================

[Original] Andrew Ng chose to fill in the blanks in Coursera for Stanford machine learning.

Week 2 gradient descent for multiple variables [1] multi-variable linear model cost function Answer: AB [2] feature scaling feature Scaling Answer: d 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: 【] Answer: [Original] Andrew Ng chose to fill in the blanks in Coursera for Stanford machine

Coursera Machine Learning Study notes (vii)

-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the entire convergence and parameter determination pr

Coursera-machine Learning, Stanford:week 11

Overview photo OCR problem Description and Pipeline sliding Windows getting Lots of data and Artificial data ceiling analysis:what part of the Pipeline to work on Next Review Lecture Slides Quiz:Application:Photo OCR Conclusion Summary and Thank You Log 4/20/2017:1.1, 1.2; Note Ocr? ... Coursera-machine

Coursera Machine Learning Techniques Course Note 09-decision Tree

This is what we have learned (except decision tree)Here is a typical decision tree algorithm, with four places to choose from:Then introduced a cart algorithm: By decision Stump divided into two categories, the criterion for measuring subtree is that the data are divided into two categories, the purity of these two types of data (purifying).The following is a measure of purity:Finally, when to stop:Decision tree may be overfitting, reducing the number of Ein and leaves (indicating the complexity

? The elements of statistical learning )? Class notes (1)

I posted my microblog two days ago, but Wu lide from Fudan Institute of Computer Science is running? The elements of statistical learning )? This course is still in Zhangjiang... how can I miss Daniel's class? I'm sure I have to ask for leave to join the class... in order to reduce the psychological pressure, I also pulled a bunch of colleagues to listen to it. A dozen of eBay's mighty people killed the pas

The learning experience of statistical learning method (Hangyuan Li) (i.)

A blink of an eye, from the beginning of contact with machine learning, to now be trivial about, have to put down Hangyuan Li Teacher's "statistical learning method", nearly five months. For five months, the first one months were the happiest of my time, and it was wonderful to enjoy all the thinking that the statistical

[Pattern Recognition and machine learning] -- Part2 Machine Learning -- statistical learning basics -- regularized Linear Regression

, the minimum value of the price function jval provided by us, of course, returns the solution of the vector θ. The above method is obviously applicable to regular logistic regression.5. Conclusion Through several recent articles, we can easily find that both linear regression and logistic regression can be solved by constructing polynomials. However, you will gradually find that more powerful non-linear classifiers can be used to solve polynomial regression problems. In the next article, we wil

Machine learning-Hangyuan Li-Statistical Learning Method Learning Note perception Machine (2)

+x3y3+x1y1+x3y3 +x3y3W7=w1+x3y3 +x3y3+x3y3+x1y1+x3y3 +x3y3W7=w0+x1y1 +x3y3 +x3y3+x3y3+x1y1+x3y3 +x3y3So we can conclude that the final W7 value is two times X1y1 + five times X3y3It is equal to the same in the dual form.Similarly can be obtained B, example 2.2 of the error conditions we can also be written in the following form.The solution iterative process given by the author is compared from the above formula. We should be able to easily understand the dual-form of the perceptron algorithm, t

Statistical Learning Method notes <Chapter 1>

Chapter 1 Statistical Learning Method Overview 1.1 Statistical Learning Statistical Learning is a discipline in which computers use data probability models to predict and analyze data. Statist

Total Pages: 5 1 2 3 4 5 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.