structuring machine learning projects coursera

Learn about structuring machine learning projects coursera, we have the largest and most updated structuring machine learning projects coursera information on alibabacloud.com

Coursera Machine Learning Notes (iv)

Mainly for the sixth week Content machine learning application recommendations and system design.What to do nextWhen training good one model, predicting unknown data discovery, how to improve it? Get more examples of training Try to reduce the number of features Try to get more features Try adding two-item features Try to reduce the degree of normalization λ Try to increase the

Coursera Machine Learning Study notes (iii)

-Unsupervised learningIn supervised learning, whether it is a regression problem or a classification problem, we use the data to have a clear label or the corresponding prediction results.In unsupervised learning, our existing data have no corresponding results or labels, and some are just features. Therefore, the problem to be solved by unsupervised learning is

Coursera Big Machine Learning Course note 8--Linear Regression for Binary classification

I've been talking about why machines can learn, and starting with this lesson are some basic machine learning algorithms, i.e. how machines learn.This lesson is about linear regression, starting with the minimization of Ein, introducing the Hat Matrix to understand the geometric meaning. Finally, the linear regression and binary classification are compared, and the reason why linear regression can be used t

Coursera Machine Learning Notes (vii)

Mainly for the ninth week content: Anomaly detection, recommendation system(i) Anomaly detection (DENSITY estimation) kernel density estimation ( Kernel density estimation X (1) , X (2) ,.., x (m) If the data set is normal, we want to know the new data X (test) p (x) After density estimation, it is a common method to select a probability threshold to determine whether it is an anomaly, which is often used in anomaly detection. Such as: Gaussian distributionThe Gaussian k

Coursera Machine Learning Study notes (ii)

a patient's tumour is malignant, depending on the size of the patient's tumour:Of course, sometimes we use more than one variable, such as the age of the patient, the size and shape of the tumour, and so on.In the picture, the circle represents benign and the fork is malignant, and the problem we want to learn becomes the division of benign tumors and malignant tumors.This problem is also called classification problem, the classification of the use of discrete values. We want to use this algori

Coursera Machine Learning Techniques Course Note 09-decision Tree

This is what we have learned (except decision tree)Here is a typical decision tree algorithm, with four places to choose from:Then introduced a cart algorithm: By decision Stump divided into two categories, the criterion for measuring subtree is that the data are divided into two categories, the purity of these two types of data (purifying).The following is a measure of purity:Finally, when to stop:Decision tree may be overfitting, reducing the number of Ein and leaves (indicating the complexity

Coursera Machine Learning Study notes (14)

cost function least.The algorithm is:After derivation, get:Note: Although the resulting gradient descent algorithm appears to be the same as the gradient descent algorithm for linear regression, the hypothetical function here differs from the linear regression, so it is actually different. In addition, it is still necessary to perform feature scaling before applying the gradient descent algorithm.In addition, there are some alternatives to the gradient descent algorithm:In addition to the gradi

Coursera Open Class Machine Learning: Linear Algebra Review (optional)

general, multiplication does not satisfy the exchange law: $ \ Matrix {A} \ times \ matrix {B} \ not = \ matrix {B} \ times \ matrix {A} $Special Matrix $ \ Matrix {I }=\ matrix {I _ {n \ times N }}=\ begin {bmatrix} 1 0 \ cdots 0 0 \ Cr0 1 \ cdots 0 0 \ Cr \ vdots \ vdots \ Cr0 0 \ cdots 1 0 \ Cr0 0 \ cdots 0 1 \ Cr \ end {bmatrix} $ For any matrix $ \ matrix {A} $: $ \ Matrix {A} \ times \ matrix {I }=\ matrix {I} \ times \ matrix {A }=\ matrix {A} $Inverse Matrix and inverte

Coursera Machine Learning Course note--Linear Models for classification

In this section, a linear model is introduced, and several linear models are compared, and the linear regression and the logistic regression are used for classification by the conversion error function.More important is this diagram, which explains why you can use linear regression or a logistic regression to replace linear classificationThen the stochastic gradient descent method is introduced, which is an improvement to the gradient descent method, which greatly improves the efficiency.Finally

Coursera Machine Learning Techniques Course Note 03-kernel Support Vector machines

This section is about the nuclear svm,andrew Ng's handout, which is also well-spoken.The first is kernel trick, which uses nuclear techniques to simplify the calculation of low-dimensional features by mapping high-dimensional features. The handout also speaks of the determination of the kernel function, that is, what function K can use kernel trick.In addition, the kernel function can measure the similarity of two features, the greater the value, the more similar.Next is the polynomial Kernel, w

Coursera Machine Learning Study notes (11)

-Polynomial regressionSince linear regression does not apply to all data, sometimes we need to use curves to fit our data, for example, with two-times polynomial:Or three-time polynomial:Usually we need to look at the data before deciding what model to try to fit.After that, we can make:The two-time polynomial is then converted to a linear regression model.It is worth noting that if we adopt a polynomial regression model, feature scaling is necessary before the gradient descent algorithm is run.

Coursera Machine Learning Study notes (eight)

the transpose of the Matrix.-Gradient descent for multiple variablesSimilar to univariate/feature linear regression, in multivariable/feature linear regression, we will also define a cost function, namely:Our goal is the same as the problem in univariate/characteristic linear regression, which is to find out the combination of parameters that make the cost function least.Therefore, the multivariable/linear regression gradient descent algorithm is:ThatAfter the derivative number can be obtained:

Various machine learning open source projects featured TOP30

8,800 machine learning Open source projects for you to select TOP30. Licensed from AI Technology Base (id:rgznai100)This article is a combination of text, suggested reading 5 minutes.This article brings you 30 highly acclaimed machine learning open source

11 Open source projects for machine learning

Transferred from Infoq, author Zhang Tianrei Machine learning is a hot topic in the field of data analysis, which often uses a variety of machine learning algorithms in peacetime learning and life. In fact, many of the machine

Common pitfalls in machine learning projects

: Modeling on training data is too precise, and there are some noise points in the model. At this point, overfitting reduces the scale of the model, much more in higher dimensions and more complex class boundaries. Data adoption and segmentation: With respect to data disclosure, you need to be very careful to know whether the training, testing, and cross-checking datasets are truly independent datasets. For timing problems, many ideas and work need to ensure that the system can reply to the

Total Pages: 3 1 2 3 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.