Keras mixed with TensorFlow Keras and TensorFlow using tensorfow Fly Keras
Recently, TensorFlow has updated its new version to 1.4. Many updates have been made, and it is of course important to add Tf.keras. After all, Keras for the convenience of the model building everyone is obvious to all.
Likes the
about the Keras 2.0 version of the Run demo error problem
Because it is the neural network small white, when running the demo does not understand Keras version problem, appeared a warning:
C:\ProgramData\Anaconda2\python.exe "F:/program Files (x86)/jetbrains/pycharmprojects/untitled1/cnn4.py"
Using Theano backend.
F:/program Files (x86)/jetbrains/pycharmprojects/untitled1/cnn4.py:27:userwarning:update your
Keras a pre-trained model with multiple networks that can be easily used.Installation and use main references official tutorial: https://keras.io/zh/applications/https://keras-cn.readthedocs.io/en/latest/other/application/An example of using RESNET50 for ImageNet classification is given on the official website. fromKeras.applications.resnet50ImportResNet50 fromKeras.preprocessingImportImage fromKeras.applic
Logs/000/trained_weights_final.h5 placement after training weightKeras-yolo3-masterKeras/tensorflow + Python + yolo3 train your own datasetCode: https://github.com/qqwweee/keras-yolo3Modify the yolov3.cfg file: 79695109Use yolo3 to train your own dataset for Target DetectionVocdevkit/voc2007/Annotations XML fileVocdevkit/voc2007/javasimages jpgimageFour files under vocdevkit/voc2007/imagesets/Main, create the file test. py under voc2007,Run voc_annota
Deep learning Keras Frame Notes Autoencoder class use notes This is a very common auto-coding model for building. If the parameter is Output_reconstruction=true, then Dim (input) =dim (output), otherwise dim (output) =dim (hidden).Inputshape: Depends on the definition of encoderOutputshape: Depends on the definition of decoderParameters:
Encoder: Encoder, which is a layer type or layer container type.
Decoder: Decoder, which is a layer t
,output_dim=300
Back to the original question: the embedded layer converts a positive integer (subscript) to a vector with a fixed size, such as [[4],[20]]->[[0.25,0.1],[0.6,-0.2]]
Give me a chestnut: if the Word table size is 1000, the word vector dimension is 2, after the word frequency statistics, Tom corresponds to the id=4, and Jerry corresponding to the id=20, after the conversion, we will get a m1000x2 matrix, and Tom corresponds to the matrix of the 4th line, The data to remove the row i
Today, the GPU is used to speed up computing, that feeling is soaring, close to graduation season, we are doing experiments, the server is already overwhelmed, our house server A pile of people to use, card to the explosion, training a model of a rough calculation of the iteration 100 times will take 3, 4 days of time, not worth the candle, Just next door there is an idle GPU depth learning server, decided to get started.
Deep learning I was also preliminary contact, decisive choice of the simp
Recently paid attention to a burst of keras, feeling this thing quite convenient, today tried to find it really quite convenient. Not only provide the commonly used algorithms such as layers, normalization, regularation, activation, but also include several commonly used databases such as cifar-10 and mnist, etc.
The following code is Keras HelloWorld bar. Mnist handwritten digit recognition with MLP implem
The model saved with H5py has very little space to take up. Before you can use H5py to save Keras trained models, you need to install h5py, and the specific installation process will refer to my blog post about H5py installation: http://blog.csdn.net/linmingan/article/details/50736300
the code to save and read the Keras model using H5py is as follows:
Import h5py from keras.models import model_from_json
RNN model of deep learning--keras training
RNN principle: (Recurrent neural Networks) cyclic neural network. It interacts with each neuron in the hidden layer and is able to handle the problems associated with the input and back. In RNN, the output from the previous moment is passed along with the input of the next moment, which is equivalent to a stream of data over time. Unlike Feedforward neural networks, RNN can receive serialized data as input,
index is to assign an integer ID to each word in turn. Traversing all the news texts, we keep only the 20,000 words we see most, and each news text retains a maximum of 1000 words. Generates a word vector matrix. Column I is a word vector that represents the word index for I. Load the word vector matrix into the Keras embedding layer, set the weight of the layer can not be trained (that is, in the course of network training, the word vector will no l
According to the description of the kaggle:invasive species monitoring problem, we need to judge whether the image contains invasive species, that is, to classify the images (0: No invasive species in the image; 1: The images contain invasive species), According to the data given (2295 graphs and categories of the training set, 1531 graphs of the test set), it is clear that this kind of image classification task is very suitable to be solved by CNN, KERA Application Module application provides
Deeplearning library is quite a lot of, now GitHub on the most hot should be caffe. However, I personally think that the Caffe package is too dead, many things are packaged into a library, to learn the principle, or to see the Theano version.My personal use of the library is recommended by Friends Keras, is based on Theano, the advantage is easy to use, can be developed quickly.Network frameworkThe network framework references Caffe's CIFAR-10 framew
Learning Data Augmentation Based on keras, augmentationkeras
In deep learning, when the data size is not large enough, the following 4 methods are often used:
1. Manually increase the size of the training set. A batch of "new" Data is created from existing Data by means of translation, flip, and Noise addition. That is, Data Augmentation.2. regularization. A small amount of data may lead to over-fitting of the model, making the training error small a
Keras is a Theano and TensorFlow-compatible neural network Premium package that uses him to component a neural network more quickly, and several statements are done. and a wide range of compatibility allows Keras to run unhindered on Windows and MacOS or Linux.Today to compare learning to use Keras to build the following common neural network:
Regression
Keras error ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtype = float32 )',
Train and save the model on the server. After the model is copied to the local machine, the load_model () error is returned:
ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtyp
under the successful installation Anaconda,
First, install MinGW:
Open prompt--
Input:Conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/--in input: Conda config--set show_cha Nnel_urls yes--
last input: Conda install MinGW Libpython (so the purpose of the installation is to download more quickly)
Second,
Open
Prompt
, you will see a path inside the window, depending on your path, locate the corresponding directory, and create a new text document in the dir
The curve fitting is realized, that is, the regression problem.
The model was created with single input output, and two hidden layers were 100 and 50 neurons.
In the official document of Keras, the examples given are mostly about classification. As a result, some problems were encountered in testing regression. In conclusion, attention should be paid to the following aspects:
1 training data should be matrix type, where the input and output is 1000*1,
The Keras Python Library makes creating deep learning models fast and easy.
The sequential API allows you to create models Layer-by-layer for most problems. It is limited the it does not allow the to create models that share layers or have multiple inputs or outputs.
The functional API in Keras is a alternate way of creating models, offers a lot flexibility more complex models.
In this tutorial, you'll disc
This article mainly introduces the question and answer section of Keras, in fact, very simple, may not be in detail behind, cooling a bit ahead, easy to look over.
Keras Introduction:
Keras is an extremely simplified and highly modular neural network Third-party library. Based on Python+theano development, the GPU and CPU operation are fully played. The purpose o
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.