Install keras (tensorflow is the background) and kerastensorflow in Ubuntu
0 System Version Ubuntu16.04
1. system update (the speed is very slow. You can skip this step to see if it will affect subsequent installation)
sudo apt updatesudo apt upgrade
2. Install python Basic Development Kit
sudo apt install -y python-dev python-pip python-nose gcc g++ git gfortran vim
3. Download Anaconda and install it on the terminal.
./Anaconda.sh
4. Modify termina
Conda create-n Keras python=3.5 IpykernelActivate KerasPython-m ipykernel Install--user--name kerasJupyter NotebookKeras installed using this method can be called by Jupyter Notebook.I found the answer at http://ipython.readthedocs.io/en/stable/install/kernel_install.html# Kernels-for-different-environmentsIpykernel have to is linked to the environment, and then jupyter can use it.The following installation procedure works:conda create -n
(LambdaX:X * * 2))#add a layer that returns the concatenation# of the positive part of the the input and#The opposite of the negative partdefantirectifier (x): x-= K.mean (x, Axis=1, keepdims=True) x= K.l2_normalize (x, Axis=1) Pos=k.relu (x) Neg= K.relu (-x)returnK.concatenate ([Pos, neg], Axis=1)defAntirectifier_output_shape (input_shape): Shape=list (input_shape)assertLen (shape) = = 2#Only valid for 2D tensorsShape[-1] *= 2returntuple (Shape) model.add (Lambda (antirectifier, Output_shape=a
Tags: Environment configuration EPO Directory decompression profile logs Ros Nvidia initializationThis article is a personal summary of the Keras deep Learning framework configuration, the shortcomings please point out, thank you! 1. First, we need to install the Ubuntu operating system (under Windows) , which uses the Ubuntu16.04 version: 2. After installing the Ubuntu16.04, the system needs to be initialized and updated:Open Terminal input:System U
Keras Installation:It is best to build in the Anaconda virtual environment:Conda create-n Environment Name python=3.6Enter the environment:Source Activate Environment nameInstall Keras:Pip Install KerasPip Install TheanoPip Install tensorflow-gpu==1.2.0If you use Theano as backend, you need to Conda install PYGPU to support parallel and gou operations.
If Modulenotfounderror:no module named ' Mkl ' appearsTo demote the MKL in the current environment
Let's spit it out. This is based on the Theano Keras how difficult to install, anyway, I am under Windows toss to not, so I installed a dual system. This just feel the powerful Linux system at the beginning, no wonder big companies are using this to do development, sister, who knows ah ....Let's start by introducing the framework: We all know the depth of the neural network, Python started with Theano this framework to write the neural network, but la
Keras in the construction of neural network model and training neural network, simple and useful, summed up a few Keras API use, continuous updating. Of course, you can also learn through the Keras website. Visualization of https://keras.io/models
Save the model map as a picture.
From keras.utils import Plot_model
Plot_model (model, to_file= ' model.png ')
Plot_
Reprint Please specify:Look at Daniel's small freshness : http://www.cnblogs.com/luruiyuan/This article original website : http://www.cnblogs.com/luruiyuan/p/6660142.htmlThe Ubuntu version I used was 16.04, and using Gnome as the desktop (which doesn't matter) has gone through a lot of twists and turns and finally completed the installation of Keras with TensorFlow as the back end.Installation of the TENSORFLOW-GPU version:1. Download CUDA 8.0Address:
Keras If you are using the Theano back end, you should automatically do not use the GPU only CPU, start the GPU using Theano internal command.For the TensorFlow back end Keras and TensorFlow will automatically use the visible GPU, and I need it to run only on the CPU. Three methods were found on the web, and the last one was useful to me, but the following records were also made for three: using TensorFlow
This is Keras tutorial introduces you to deep learning Python:learn into preprocess to your data, model, evaluate and optimize Neural networks. ▲21▲21
Deep Learning
By now, your might already know machine learning, a branch in computer science that studies the "design of Algorithms" C An learn. Today, your ' re going to focus on deep learning, a subfield of machine learning This is a set of algorithms this is inspired By the structure and function of
1. Introduction Keras is a Theano based framework for deep learning, designed to refer to torch, written in Python, and is a highly modular neural network library that supports GPU and CPU. Keras Official document Address 2. Process First, use CNN for training, use the Theano function to remove the full link of the CNN, and train the SVM 3. Results Example Because this is just a demo
right: Actually, the right is a left-hand image on the time series of the expansion, the last moment output is the input of this moment. It is important to note that, in fact, all neurons on the right are the same neuron, the left, which share the same weights, but accept different inputs at each moment, and then output to the next moment as input. This is the information stored in the past.Understanding the meaning of "loops" is the purpose of this chapter, and the formulas and details are des
Installing Anaconda3
A key step:conda install pip
The following to install a variety of packages you need, generally no more error.pip install tensorflow-gpu ==1.5.0rc1pip install -U keras
If you need to install Theano, you need to install its dependency package, which isconda install mingw libpythonpip install -U theano
Install OpenCV3 (Windows environment):pip install -U opencv-contrib-python
Install TensorFlow
About Keras:Keras is a high-level neural network API, written in Python and capable of running on TENSORFLOW,CNTK or Theano.Use the command to install:Pip Install KerasSteps to implement deep learning in Keras
Load the data.
Define the model.
Compile the model.
Fit the model.
Evaluate the model.
Use the dense class to describe a fully connected layer. We can specify the number of neurons in a layer as the first parameter,
"""Some Special Pupropse layers for SSD."""ImportKeras.backend as K fromKeras.engine.topologyImportInputspec fromKeras.engine.topologyImportLayerImportNumPy as NPImportTensorFlow as TFclassNormalize (Layer):"""normalization layer as described in parsenet paper. # Arguments Scale:default feature scale. # Input shape 4D tensor with shape: ' (samples, channels, rows, cols) ' If dim_ordering= ' th ' or 4D tens or with shape: ' (samples, rows, cols, Channels) ' If dim_ordering= ' TF '. # Output
After downloading the mnist dataset from my last article, the next step is to see how Keras classifies it.
Reference blog:
http://blog.csdn.net/vs412237401/article/details/51983440
The time to copy the code found in this blog is not working here, the preliminary judgment is because the Windows and Linux system path differences, handling a bit of a problem, so modified a little
First look at the original:
Defload_mnist (path,kind= ' train '): "" "
Environment: MAC
Using the Keras drawing requires the use of the Plot_model function, the correct usage is as follows:
From keras.utils import Plot_model
plot_model (model,to_file= ' model.png ')
But it's an error.
Keras importerror:failed to import Pydot. You are must install Pydot and Graphviz for ' pydotprint ' to work.
The error says Pydot and Graphviz are not installed, and then run to use PIP to ins
from: "Keras" semantic segmentation of remote sensing images based on segnet and U-net
Two months to participate in a competition, do is the remote sensing HD image to do semantic segmentation, the name of the "Eye of the sky." At the end of this two-week data mining class, project we selected is also a semantic segmentation of remote sensing images, so just the previous period of time to do the results of the reorganization and strengthen a bit, so
In Keras, a neural network visualization function plot is provided, and the visualization results can be saved locally. Plot use is as follows:
From Keras.utils.visualize_util import plot
plot (model, to_file= ' model.png ')
Note: The author uses the Keras version is 1.0.6, if is python3.5
From
keras.utils
import
plot_model
plot_model (model,to_file= ' model.png ')
However, this feature relies on the
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.