Deep learning--the artificial neural network and the upsurge of researchHu XiaolinThe artificial neural network originates from the last century 40 's, to today already 70 years old. Like a person's life, has experienced the rise and fall, has had the splendor, has had the dim, has had the noisy, has been deserted. Generally speaking, the past 20 years of artificial neural network research tepid, until the
Https://github.com/exacity/deeplearningbook-chinese
In the help of many netizens and proofreading, the draft slowly became a first draft. Although there are still many problems, at least 90% of the content is readable and accurate. We kept the meaning of the original book Deep learning as much as possible and kept the original book's statement.
However, we have limited levels and we cannot eliminate the va
Cold Yang small dragon Heart DustDate: March 2016.Source: http://blog.csdn.net/han_xiaoyang/article/details/50856583http://blog.csdn.net/longxinchen_ml/article/details/50903658Disclaimer: Copyright, reprint please contact the author and indicate the source1.Key ContentIntroductionThe system is based on the CVPR2015 of the paper "deep learning of Binary Hash Codes for Fast image retrieval" Implementation of
first, deep reinforcement learning of the bubbleIn 2015, DeepMind's Volodymyr Mnih and other researchers published papers in the journal Nature Human-level control through deep reinforcement learning[1], This paper presents a model deep q-network (DQN), which combines depth
1. A series of articles about getting started with DQN:DQN from getting started to giving up2. Introductory Paper2.1 Playing Atariwith a deep reinforcement learning DeepMind published in Nips 2013, the first time in this paper Reinforcement learning this name, and proposed DQN (deep q-network) algorithm, realized from
, such as the right half, should be added.Unefficient Grid Size reductionThere is a problem, it will increase the computational capacity, so szegedy came up with the following pooling layer.Efficient Grid Size reductionAs you can see, Szegedy uses two parallel structures to complete the grid size reduction, respectively, the right half of the conv and pool. The left half is the inner structure of the right part.Why did you do this? I mean, how is this structure designed? Szegedy no mention, perh
The Wunda "Deep learning engineer" Special course includes the following five courses:
1, neural network and deep learning;2, improve the deep neural network: Super parameter debugging, regularization and optimization;3. Structured machine
One of the target detection (traditional algorithm and deep learning source learning)
This series of writing about target detection, including traditional algorithms and in-depth learning methods will involve, focus on the experiment and not focus on the theory, theory-related to see the paper, mainly rely on OPENCV.
F
Caffe (convolution Architecture for Feature Extraction) as a very hot framework for deep learning CNN, for Beginners, Build Linux under the Caffe platform is a key step in learning deep learning, its process is more cumbersome, recalled the original toss of those days, then
Deep historyHistory of Deep learningThe roots of deep learning reach back further than LeCun ' s time at Bell Labs. He and a few others who pioneered the technique were actually resuscitating a long-dead idea in artificial intelligence.The root of deep
Energy-based model (EBM)The energy-based model associates every variable we are interested in with a scalar energy. learning is to modify the energy equation so that its shape has what we need. for example, we hope that the expected structure has low energy. the energy-based probabilistic model defines a probability distribution, which is determined by the energy equation: the normalized factor Z is called the allocation function, which is similar to
0. OriginalDeep learning algorithms with applications to Video Analytics for A Smart city:a Survey1. Target DetectionThe goal of target detection is to pinpoint the location of the target in the image. Many work with deep learning algorithms has been proposed. We review the following representative work:SZEGEDY[28] modified the
difficult to benefit from end-to-end learning methods;
The DCF algorithm is less than two: Model updating adopts the method of sliding weighted averaging, which is not the optimal updating method, because once the noise is involved in the update, it is likely to lead to the drift of the model, so it is difficult to simultaneously get the stability and adaptability of the model.
Improvement One: The model of DCF algorithm is regarded as convolution fi
multitasking learning. In single-task learning, each task takes a separate data source and learns each individual task model separately. In multi-task learning, multiple data sources use shared representations to learn multiple sub-task models at the same time.The basic assumption of multi-tasking learning is that the
Http://www.cnblogs.com/lc1217/p/7132364.html
1. About Keras
1) Introduction
Keras is a theano/tensorflow-based, in-depth learning framework written by pure Python.
Keras is a high level neural network API that supports fast experiments that can quickly turn your idea into a result, and you can choose Keras if you have the following requirements:
A simple and rapid prototyping design (Keras with highly mod
July algorithm December machine learning online Class---20th lesson notes---deep learning--rnnJuly algorithm (julyedu.com) December machine Learning Online class study note http://www.julyedu.com
Cyclic neural networks
Before reviewing the knowledge points:Fully connected forward network:
Some of the material of the deep learning introductory study are summarized according to the answers of some of Daniel's replies:Be noted that SOME VIDEOS is on youtube! I believe that you KNOW how to ACESS them.1. Andrew Ng's machine learning contents of the first four chapters (linear regression and logistic regression)Http://open.163.com/special/opencourse/mac
Python implementation of multilayer neural networks.
The code is pasted first, the programming thing is not explained.
Basic theory reference Next: Deep Learning Learning Notes (iii): Derivation of neural network reverse propagation algorithm
Supervisedlearningmodel, Nnlayer, and softmaxregression that appear in your code, refer to the previous note:
Programmers who have turned to AI have followed this number ☝☝☝
Author: Lisa Song
Microsoft Headquarters Cloud Intelligence Advanced data scientist, now lives in Seattle. With years of experience in machine learning and deep learning, we are familiar with the requirements analysis, architecture design, algorithmic development and integrated deployment of machi
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.