CUDA and cuda ProgrammingCUDA SHARED MEMORY
Shared memory has some introductions in previous blog posts. This section focuses on its content. In the global Memory section, Data Alignment and continuity are important topics. When L1 is used, alignment can be ignored, but non-sequential Memory acquisition can still reduce performance. Dependent on the nature of algorithms, in some cases, non-continuous access
CUDA 5, CUDAGPU Architecture
SM (Streaming Multiprocessors) is a very important part of the GPU architecture. The concurrency of GPU hardware is determined by SM.
Taking the Fermi architecture as an example, it includes the following main components:
CUDA cores
Shared Memory/L1Cache
Register File
Load/Store Units
Special Function Units
Warp Scheduler
Each SM in the GPU is designed to support hundred
Use Python to write the CUDA program, and use python to write the cuda Program
There are two ways to write a CUDA program using Python:
* Numba* PyCUDA
Numbapro is no longer recommended. It is split and integrated into accelerate and Numba.
Example
Numba
Numba optimizes Python code through the JIT mechanism. Numba can optimize the hardware environment of the Loca
been encountered only in the case of pgi/opteron.* Note 6: Before testing the parallel version, set the environment variable, for example, export DO_PARALLEL = 'mpirun-np 4'. The actual parameters are different for different machines.* Note 7: The OPENMPI versions supported by configure_openmpi are 1.4.2 and 1.4.3.* Note 8: MKL supports 10.0 or 11.0 series this time. If you are using version 9.0 or earlier, you must add the-oldmkl parameter to configure.* Note 9: The parallelism parameters are
write in front
The content is divided into two parts, the first part is translation "Professional CUDA C Programming" section 2. The timing YOUR KERNEL in CUDA programming model, and the second part is his own experience. Experience is not enough, you are welcome to add greatly.
Cuda, the pursuit of speed ratio, want to get accurate time, the timing function is
:( 65536,65535)The maximum dimensions for 3D textures :( 2048,2048, 2048)Whether the device supports executing multiple kernels within the same context simultaneously: Yes!Yue @ ubuntu-10 :~ /Cuda/cudabye $ Vim cudabyex331.cuYue @ ubuntu-10 :~ /Cuda/cudabye $ Vim cudabyex331.cuYue @
CUDA 6, CUDAWarp
Logically, all threads are parallel. However, from the hardware point of view, not all threads can be executed at the same time. Next we will explain some of the essence of warp.Warps and Thread Blocks
Warp is the basic execution unit of SM. A warp contains 32 parallel threads, which are executed in SMIT mode. That is to say, all threads execute the same command, and each thread uses its own data to execute the command.
A block can be
Cuda Memory Model:
GPU chip: Register, shared memory;
Onboard memory: local memory, constant memory, texture memory, texture memory, global memory;
Host memory: host memory, pinned memory.
Register: extremely low access latency;
Basic Unit: register file (32bit/each)
Computing power 1.0/1.1 hardware: 8192/Sm;
Computing power 1.2/1.3 hardware: 16384/Sm;
The register occupied by each thread is limited. Do not assign too many private variables to it dur
Document directory
Function qualifier
Variable type qualifier
Execute Configuration
Built-in Variables
Time Functions
Synchronous Functions
1. Parallel Computing
1) Single-core command-level parallel ILP-enables the execution unit of a single processor to execute multiple commands simultaneously
2) multi-core parallel TLP-integrate multiple processor cores on one chip to achieve line-level parallel
3) multi-processor parallelism-Install multiple processors on a single circuit board and i
the. Run installation is relatively stable, but I am using it now.3. Configure the environment
My system is 64-bit, so add it to. bashrc When configuring the environment
$ export PATH=/usr/local/cuda-6.5/bin:$PATH$ export LD_LIBRARY_PATH=/usr/local/cuda-6.5/lib64:$LD_LIBRARY_PATH
After the environment is configured, execute the command
~$ source .bashrc
Make it take effect immediately.4. install samp
Cuda register array resolution, cuda register
About cuda register array
When performing Parallel Optimization on some algorithms based on cuda, in order to improve the running speed of the algorithm as much as possible, sometimes we want to use register arrays to make the algorithm fly fast, but the effect is always u
Win10 with CMake 3.5.2 and vs update1 compiling GPU version (Cuda 8.0, CUDNN v5 for Cuda 8.0) Open compile release and debug version with VS 2015 See the example on the net there are three inside the project Folders include (Include directories containing Mxnet,dmlc,mshadow)Lib (contains Libmxnet.dll, libmxnet.lib, put it in vs. compiled)Python (contains a mxnet,setup.py, and build, but the build contains t
Today we have a few gains, successfully running the array summation code: Just add the number of n sumEnvironment: cuda5.0,vs2010#include "cuda_runtime.h"#include "Device_launch_parameters.h"#include cudaerror_t Addwithcuda (int *c, int *a);#define TOTALN 72120#define Blocks_pergrid 32#define THREADS_PERBLOCK 64//2^8__global__ void Sumarray (int *c, int *a)//, int *b){__shared__ unsigned int mycache[threads_perblock];//sets the shared memory within each block threadsperblock==blockdim.xint i = t
install mesa-utils
When I install sudo/etc/init according to the above method. d/TPD stop or sudo/etc/init. no files are found in d/TPD restart. It may be a system problem. You don't have to worry about it. Use sudo/etc/init in steps 2 and 3. d/lightdm stop and sudo/etc/init. d/lightdm restart.
3. Install cuda, which is also a simple installation method.
1. Install cuda-6.5
Go to the folder where the downl
First verify that you have an NVIDIA graphics card (Http://developer.nvidia.com/cuda-gpus this site to see if you have a graphics card that supports GPU):
$ LSPCI | Grep-i nvidia
See your Linux distributions (mostly 64-bit or 32-bit):
$ uname-m cat/etc/*release
Look at the version of GCC:
$ gcc--versionFirst download the NVIDIA Cuda Warehouse installation package (my
Install cuda6.5 + vs2012, the operating system is win8.1 version, first of all the next GPU-Z detected a bit:
It can be seen that this video card is a low-end configuration, the key is to look at two:
Shaders = 384, also known as Sm, or the number of core/stream processors. The larger the number, the more parallel threads are executed, and the larger the computing workload per unit time.
Buswidth = 64bit. The larger the value, the faster the data processing speed.
Next let's take a look at the
In this paper, the basic concepts of CUDA parallel programming are illustrated by the vector summation operation. The so-called vector summation is the addition of the corresponding element 22 in the two array data, and the result is saved in the third array. As shown in the following:1. CPU-based vector summation:The code is simple:#include the use of the while loop above is somewhat complex, but it is intended to allow the code to run concurrently o
, supports the RDMA between the NIC and the GPU, and can greatly reduce the mpisendrecv latency between the GPU nodes in the cluster and improve the overall application performance.
--nvidia nsight Eclipse Edition: Quick and easy generation of GPU code
On Linux, Mac OS X platforms, NVIDIA nsight Eclipse Edition enables developers to develop, debug, and compile GPU applications in a familiar Eclipse IDE environment, with CUDA editors and
CUDA 3, CUDAPreface
The thread organization form is crucial to the program performance. This blog post mainly introduces the thread organization form in the following situations:
2D grid 2D block
Thread Index
Generally, a matrix is linearly stored in global memory and linear with rows:
In kernel, the unique index of a thread is very useful. To determine the index of a thread, we take 2D as an example:
Thread and block Indexes
Element coordinates
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.