Discover udacity machine learning, include the articles, news, trends, analysis and practical advice about udacity machine learning on alibabacloud.com
Python Machine Learning Theory and Practice (6) Support Vector Machine and python Learning Theory
In the previous section, the theory of SVM is basically pushed down, and the goal of finding the maximum interval is finally converted to the problem of solving the alpha of the Child variable of the Laplace multiplication
Knowing an algorithm and using an algorithm are two different things.
What should I do if I find that the model has a big error after you train the data?
1) Obtain more data. It may be useful.
2) reduce feature dimensions. You can manually select one or use mathematical methods such as PCA.
3) Obtain more features. Of course, this method is time-consuming and not necessarily useful.
4) add polynomial features. Are you trying to save your life?
5) Build your own, new, and better features. A litt
Machine Learning 4, machine learning
Probability-based classification method: Naive BayesBayesian decision theory
Naive Bayes is a part of Bayesian decision-making theory. Therefore, before explaining Naive Bayes, let's take a quick look at Bayesian decision-making theory knowledge.
The core idea of Bayesian decision-m
In machine learning, often need to calculate the distance between each sample, used for classification, according to distance, different samples grouped into a class; But in the current machine learning algorithm, the distance calculation mode is endless, then this blog is mainly to comb the current
A brief introduction to Learning _note1 against Sample machine
Machine learning methods, such as SVM, neural network, etc., although in the problem such as image classification has been outperform the ability of human beings to deal with similar problems, but also has its inherent defects, that our training sets are fe
The Ames Razor principle (Occam ' s Razor)One sentence is said, "an explanation of the data should is mad as simple as possible,but no simpler".The meaning of machine learning is that the simplest explanation of the data is the best explanation (the simplest model, fits the data is also and the most plausible).For example, the picture above, the right is not better than the left to explain? That's obviously
Nonlinear Transformation (nonlinear conversion)
ReviewIn the 11th lecture, we introduce how to deal with two classification problems through logistic regression, and how to solve multiple classification problems by Ova/ovo decomposition.
Quadratic hypothesesThe two-time hypothetical space linear hypothetical space is extremely flawed:
So far, the machine learning model we have introduced is linear model,
Machine learning practices in python3.x and python machine learning practices
Machine Learning Practice this book is written in the python2.x environment, while many functions and 2 in python3.x. the names or usage methods in x ar
findF1scoreThe algorithm with the largest value. 5. Data for Machine Learning (
Machine Learning data
)
In machine learning, many methods can be used to predict the problem. Generally, when the data size increases, the accura
Reprint Please specify source: http://www.cnblogs.com/ymingjingr/p/4271742.htmlDirectory machine Learning Cornerstone Note When you can use machine learning (1) Machine learning Cornerstone Note 2--When you can use
1. Decision Tree applicable conditions: The data of different class boundary is non-linear, and by continuously dividing the feature space into a matrix to simulate. There is a certain correlation between features. The number of feature values should be similar, because the information gain is biased towards more numerical characteristics. Advantages: 1. Intuitive decision-making rules; 2. Nonlinear characteristics can be handled; 3. The interaction between variables is considered. Disadvanta
Customer Churn
"Loss rate" is a business term that describes the customer's departure or stop payment of a product or service rate. This is a key figure in many organizations, as it is usually more expensive to get new customers than to retain the existing costs (in some cases, 5 to 20 times times the cost).
Therefore, it is invaluable to understand that it is valuable to maintain customer engagement because it is a reasonable basis for developing retention policies and implementing operational
Reprint Please specify source: http://www.cnblogs.com/ymingjingr/p/4271742.htmlDirectory machine Learning Cornerstone Note When you can use machine learning (1) Machine learning Cornerstone Note 2--When you can use
http://sourceforge.net/projects/numpy/files/download the corresponding version of the NumPy, everywhere, find a not python2.7Use Pip, please.Pip Install NumPyDownload finished, the hint does not install C + +, meaning is also to install VS2008, but installed is VS2012, had to download a VC for Pythonhttp://www.microsoft.com/en-us/download/confirmation.aspx?id=44266Re-pip, wait for the most of the day, the final count is successfulInput command introduced NumPyFrom numpy Import *Operation:InputRa
1. Common steps
2. Chinese participle
1 This is relative to the English text affective analysis, Chinese unique preprocessing.
2 Common methods: Based on the dictionary, rule-based, Statistical, based on the word annotation, based on artificial intelligence.
3 Common tools: Hit-language cloud, Northeastern University Niutrans statistical Machine translation system, the Chinese Academy of Sciences Zhang Huaping Dr. Ictclas, Posen technology, stutterin
Reprint Please specify the Source: http://www.cnblogs.com/ymingjingr/p/4271742.htmlDirectoryMachine learning Cornerstone Note When machine learning can be used (1)Machine learning Cornerstone Note 2--When you can use machine
1. Vector Norm
Norm, Norm, is a concept similar to "Length" in mathematics, which is actually a kind of function.The regularization (regularization) and sparse coding (Sparse coding) in machine learning are very interesting applications.For Vector a∈rn A\in r^n, its LP norm is | | a| | p= (∑IN|AI|P) 1p (1) | | a| | _p= (\sum_i^n |a_i|^p) ^{\frac 1 p} \tag 1Commonly used are:
L0 NormThe number of elements i
Cross entropy cost function 1. Cross-entropy theory
Cross entropy is relative to entropy, as covariance and variance.
Entropy examines the expectation of a single information (distribution):
H (p) =−∑I=1NP (xi) Logp (xi)
Cross-Entropy examines the expectations of two of information (distributions):H (P,Q) =−∑I=1NP (xi) logq (xi)For details, please see Wiki Cross entropy
y = Tf.placeholder (Dtype=tf.float32, Shape=[none, ten]) ...
Scores = Tf.matmul (H, W) + b
probs = Tf.nn.softmax (scores)
l
Bayesian Introduction Bayesian learning Method characteristic Bayes rule maximum hypothesis example basic probability formula table
Machine learning learning speed is not fast enough, but hope to learn more down-to-earth. After all, although it is it but more biased in mathematics, so to learn the rigorous and thoroug
Earlier, we mentioned supervised learning, which corresponds to non-supervised learning in machine learning. The problem with unsupervised learning is that in untagged data, you try to find a hidden structure. Because the examples provided to learners arenot marked, so there
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.