Alibabacloud.com offers a wide variety of articles about udemy machine learning course, easily find your udemy machine learning course information here online.
: One-to-multiple
)
Sometimes the problem is not as simple as determining whether a patient's tumor is malignant or benign. For example, determining whether the weather is sunny, cloudy, raining, Or snowing is necessary. We can use a line to separate binary classification. What about multiclass classification?
There is a simple method, that is, to separate only one category at a time. There are several categories to construct several decision edge, that is, severalH (x):
In th
This is what we have learned (except decision tree)Here is a typical decision tree algorithm, with four places to choose from:Then introduced a cart algorithm: By decision Stump divided into two categories, the criterion for measuring subtree is that the data are divided into two categories, the purity of these two types of data (purifying).The following is a measure of purity:Finally, when to stop:Decision tree may be overfitting, reducing the number of Ein and leaves (indicating the complexity
dimension.Finally, we propose a method for solving overfitting, including data cleaning/pruning, data hinting, regularization (regularization), confirmation (validation), andTo drive for example to illustrate the role of these methods, the latter two methods are also the contents of the following two lessons.Data cleaning/pruning is to correct or delete the wrong sample points, processing is simple, but usually such sample points are not easy to find.Data hinting generate more sample numbers by
This section is about regularization, in the optimization of the use of regularization, in class when the teacher a word, not too much explanation. After listening to this class,To understand the difference between a good university and a pheasant university. In short, this is a very rewarding lesson.First of all, we introduce the reason for regularization, simply say that the complex model with a simple model to express, as to how to say, there is a series of deduction hypothesis, very creative
In this section, a linear model is introduced, and several linear models are compared, and the linear regression and the logistic regression are used for classification by the conversion error function.More important is this diagram, which explains why you can use linear regression or a logistic regression to replace linear classificationThen the stochastic gradient descent method is introduced, which is an improvement to the gradient descent method, which greatly improves the efficiency.Finally
This section is about the nuclear svm,andrew Ng's handout, which is also well-spoken.The first is kernel trick, which uses nuclear techniques to simplify the calculation of low-dimensional features by mapping high-dimensional features. The handout also speaks of the determination of the kernel function, that is, what function K can use kernel trick.In addition, the kernel function can measure the similarity of two features, the greater the value, the more similar.Next is the polynomial Kernel, w
IntroductionThe systematic learning machine learning course has benefited me a lot, and I think it is necessary to understand some basic problems, such as the category of machine learning algorithms.Why do you say that? I admit th
This column (Machine learning) includes single parameter linear regression, multiple parameter linear regression, Octave Tutorial, Logistic regression, regularization, neural network, machine learning system design, SVM (Support vector machines Support vector machine), clust
This column (Machine learning) includes single parameter linear regression, multiple parameter linear regression, Octave Tutorial, Logistic regression, regularization, neural network, machine learning system design, SVM (Support vector machines Support vector machine), clust
Preface: "The foundation determines the height, not the height of the foundation!" The book mainly from the coding program, data structure, mathematical theory, data processing and visualization of several aspects of the theory of machine learning, and then extended to the probability theory, numerical analysis, matrix analysis and other knowledge to guide us into the world of
) The principle of big data Large data rationale
Large amounts of data can greatly improve the final performance of the learning algorithm, rather than whether you use more advanced algorithms, etc., so there is a sentence:
"It's not a who had the best algorithm that wins. It's Who's have the most data.
Of course, based on the two-point premise hypothesis:
1. Assume that the characteristics of the sample ca
rigorously, because one of the objective functions in statistical learning is to maximize the prediction of the correct expected probability, we only consider the common loss function.
Loss function is an important index to approximate the quality of the model, the greater the value of the loss function is, the greater the prediction error of the model, so what we need to do is to update the parameters of the model and minimize the value of the loss
Learning notes for "Machine Learning Practice": two application scenarios of k-Nearest Neighbor algorithms, and "Machine Learning Practice" k-
After learning the implementation of the k-Nearest Neighbor Algorithm, I tested the k-
The motive and application of machine learningTools: Need genuine: Matlab, free: Octavedefinition (Arthur Samuel 1959):The research field that gives the computer learning ability without directly programming the problem.Example: Arthur's chess procedure, calculates the probability of winning each step, and eventually defeats the program author himself. (Feel the idea of using decision trees)definition 2(Tom
, the minimum value of the price function jval provided by us, of course, returns the solution of the vector θ.
The above method is obviously applicable to regular logistic regression.5. Conclusion
Through several recent articles, we can easily find that both linear regression and logistic regression can be solved by constructing polynomials. However, you will gradually find that more powerful non-linear classifiers can be used to solve polynomial reg
Directory
1. Introduction
1.1. Overview
1.2 Brief History of machine learning
1.3 Machine learning to change the world: a GPU-based machine learning example
1.3.1 Vision recognition based on depth neural network
1.3.2 Alphago
1.3.
Machine learning is a comprehensive and applied discipline that can be used to solve problems in various fields such as computer vision/biology/robotics and everyday languages, as a result of research on artificial intelligence, and machine learning is designed to enable computers to have the ability to learn as humans
Original: http://blog.csdn.net/abcjennifer/article/details/7834256This column (machine learning) includes linear regression with single parameters, linear regression with multiple parameters, Octave Tutorial, Logistic Regression, regularization, neural network, design of the computer learning system, SVM (Support vector machines), clustering, dimensionality reduc
to the right in this image. We can generally see the two learning curves, the two curves of blue and red are approaching each other. Therefore, if we extend the curve to the right, it seems that the training set error is likely to increase gradually. The cross-validation set error will continue to decline. Of course, we are most concerned with cross-validation set errors or test set errors. So from this pi
As an article of the College (http://xxwenda.com/article/584), the follow-up preparation is to be tested individually. Of course, there have been many tests.
Apache Spark itself1.MLlibAmplabSpark was originally born in the Berkeley Amplab Laboratory and is still a Amplab project, though not in the Apache Spark Foundation, but still has a considerable place in your daily GitHub program.ML BaseThe mllib of the spark itself is at the bottom of the three
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.