[Home Squat University Mathematics magazine] The No. 435 issue of the seventh Chinese College Students Mathematics Contest Preliminary Examination Questions (mathematics, October 2015) Reference solutions

Source: Internet
Author: User

I. ($ $) Set $L _1$ and $L _2$ is a two-plane line in space. In the standard Cartesian coordinate system, the line $L _1$ the point of the $a $, in the unit vector $v $ for the straight line direction, and the line $L _2$ the point with the $b $, in the unit vector $w $   To a straight line direction.   (1). Proof: There is a unique point $P \in l_1$ and $Q \in l_2$ makes two-point connection $PQ $ while perpendicular to $L _1$ and $L _2$. (2). $P $ point and $Q $ point coordinates (expressed in $a, b,v,w$).

It is proved that the equations of test instructions, $L _1,l_2$ are $$\bex x=a+sv\ (S\IN\BBR) and \quad y=b+tw\ (T\IN\BBR) respectively. \eex$$ set $P \in l_1,\ q\in l_2$ meet $$\bex pq\perp l_1,\quad pq\perp l_2, \eex$$ if $P, q$ coordinates are $p, q$, $$\bex p=a+sv,\qu Ad Q=b+tw,\quad \sef{q-p,v}=0,\quad \sef{q-p,w}=0.  \eex$$ the above equation can be solved only, and the proof is completed. In fact, $$\bex Q-P=B-A+TW-SV, \eex$$ $$\bex \sedd{\ba{ll} \sef{b-a,v}+\sef{tw-sv,v}=0\\ \sef{b-a,w}+\sef{tw-sv,w}=0 \ea}, \eex$$ $$\bex \sedd{\ba{ll}-s+\sef{v,w}t=\sef{a-b,v}\\-\sef{v,w}s+t=\sef{a-b,w} \ea}\quad\sex{|v|=|w|=1}, \eex$$ $$ \bex S=\frac{\sef{a-b,v}-\sef{a-b,w}\sef{v,w}}{-1+\sef{v,w}^2},\quad t=\frac{-\sef{a-b,w}+\sef{a-b,v}\sef{v,w}}{ -1+\SEF{V,W}^2}. \eex$$ so $$\bex p=a-\sef{a-b,\frac{v-\sef{v,w}w}{1-\sef{v,w}^2}}v,\quad q=b-\sef{a-b,\frac{-w+\sef{v,w}v}{1-\sef{ V,w}^2}}w. \eex$$

Two. ($ $ $) $A $ for $4$-order compound array, which satisfies the relation of traces: $\tr a^i=i$, $i =1,2,3,4$. The determinant of $A $.

Answer: Set $A $ with a eigenvalues of $\lm_j\ (1\leq J\leq 4) $, then the eigenvalues of the $A ^i$ are $\lm_j^i\ (1\leq J\leq 4) $. Press test instructions, $$\bex s_i\equiv \sum_{j=1}^4 \lm_j^i=i,\quad 1\leq i\leq 4. \eex$$ is set $A $ of the characteristic polynomial $$\bex f (\lm) =\prod_{j=1}^4 (\lm-\lm_j) =\lm^4+a_1\lm^3+a_2\lm^2+a_3\lm+a_4, \eex$$ by Newton formula (see PKU Higher garbage Fourth edition 49th), $$\beex \bea s_1+a_1&=0,\\ s_2+s_1a_1+2a_2&=0,\\ s_3+s_2a_1+s_1a_2+3a_3&=0,\\ s_4+s_3a_1+s_ 2a_2+s_1a_3+4a_4&=0. \eea \eeex$$ will $s _i=i$ in order to find $$\bex A_1=-1,\quad a_2=-\frac{1}{2},\quad A_3=-\frac{1}{6},\quad}. \eex$$ So, $$\bex | A|=A_4=\FRAC{1}{24}. \eex$$

Three. ($ $) Set $A $ for $n $ order solid Phalanx, its $n $ value is an even number. Try to prove that there are only 0 solutions to the matrix equation $$\bex x+ax-xa^2=0 \eex$$ about $X $.

Proof: (1). To prove the conclusion: set $A, the characteristic polynomial of b$ is $f (\LM), G (\LM) $, if $ (f (\LM), G (\LM)) =1$, then $g (A) $ reversible. In fact, $$\beex \bea &\quad 1=u (\LM) F (\lm) +v (\LM) g (\LM) \ &\ra E=u (a) f (a) +v (a) g (a) \ &\ra e=v (a) g (a) \quad\sex {\mbox{hamilton-caylay Theorem}}. \eea \eeex$$ (2).  Again the conclusion: if $A, the eigenvalues of b$ are different, then there are only 0 solutions $AX =xb$. In fact, $$\beex \bea ax=xb&\ra a^2x=aax=axb=xbb=xb^2\\ &\ra \cdots\\ &\ra F (A) x=xf (b) \ &\ra 0=Xf (b) \ \ & \ra 0=x\quad\sex{\mbox{by (1) and} (f (\LM), G (\LM)) =1}. \eea \eeex$$ (3). Finally prove the topic. The original matrix equation can be converted to $$\bex (e+a) x=xa^2. \eex$$ Note that the eigenvalues of the $E +a$ are odd, and the eigenvalues of the $A ^2$ are even numbers. From (2) stand $X =0$.

Four. ($ $) sequence $\sed{a_n}$ meet relational $$\bex a_{n+1}=a_n+\frac{n}{a_n},\ Quad A_1>0. \eex$$ Verification: $\dps{\vlm{n}n (a_n-n)}$ exist.   

Proof: Write $$\bee\label{435:4} \bea a_{n+1}-(n+1) &=a_n-n+\frac{n}{a_n}-1     =a_n-n-\frac{a_n-n }{a_n}\\     &=\sex{1-\frac{1}{a_n}} (A_n-n). \eea \eee$$ used mathematical induction to prove $$\bee\label{435:4:bounds} n\leq a_n\leq n+b\quad\sex{n\geq 2,\ b=a_2-2}. \eee$$ in fact, $$\beex \bea a_2&=a_1+\frac{1}{a_1}\geq 2,\\ a_n\geq n\ra a_{n+1}&=a_n+\frac{n}{a_n}\\ &=n+\sex {a_n-n+\frac{n}{a_n}}\\ &\geq n+\sex{n-n+\frac{n}{n}}\quad\sex{f (x) =x-n+\frac{n}{x}\mbox{in}[\sqrt{n},\infty) \mbox{on increment}}\\ &=n+1;\\ a_2&=2+b,\\ a_n\leq n+b\ra A_{n+1}&=a_n+\frac{n}{a_n}     \ Leq n+b+\frac{n}{n}     = (n+1) +b. \eea \eeex$$   by (1)-\eqref{435:4:bounds} known $$\beex \bea a_{n +1}-(n+1) &\geq\sex{1-\frac{1}{n}} (a_n-n), \ \ n\sez{a_{n+1}-(n+1)}&\geq (n-1) (a_n-n) \      &\geq \cdots\\     &\geq a_2-2=b,\\ a_{n+1}-(n+1) &\leq \sex{1-\frac{1}{n+b}} ( a_n-n), \ \ (n+b) \sez{a_{n+1}-(n+1)}&\leq \sez{(n-1) +b} (a_n-n) \ &\leq \cdots\\ &\leq (1+b) (a_2-2) = (1+b) b. \eea \eeex$$ thereupon $$\bex (n-1) (A_ N-n) \leq n\sez{a_{n+1}-(n+1)} \leq (N+b) \sez{a_{n+1}-(n+1)} \leq (1+b) B. \eex$$ This indicates that the $\sed{(n-1) (a_n-n)}$ has an upper bound, while the limit exists. Also by $$\bex N (a_n-n) =\frac{n}{n-1}\cdot (n-1) (a_n-n) \eex$$ The conclusion of the evidence is established.   

Five. ($ $) Set $f (x) $ is $[0,+\infty) $ bounded continuous function, $h (x) $ is $[0,+\infty) $ on continuous function, and $\dps{\int_0^{+\infty}h (x) \rd x=a<1}$. The constructor columns are as follows: $$\bex g_0 (x) =h (x), \quad g_n (x) =f (x) +\int_0^x H (t) g_{n-1} (t) \rd T\quad (n=1,2,\cdots). \eex$$ Verification: $\sed{g_n (x)}$ converges to a continuous function, and the limit function is obtained.

Proof: Make $$\bex A_n=\max_{0\leq x<\infty} |g_n (x)-g_{n-1} (x) |, \eex$$ then $$\beex \bea a_n&\leq \int_0^\infty |h (t) |\cdo T |g_{n-1} (t)-g_{n-2} (t) |\rd t     \leq \int_0^\infty |h (t) \rd T\cdot a_{n-1}\\ &\leq a a_{n-1}\ Leq \cdots\\ &\leq a^{n-1}a_1. \eea \eeex$$ then $$\bex \vsm{n}a_n\quad\sex{\leq a_1\vsm{n}a^{n-1} \eex$$ converge. Also by $$\bex G_n (x) =g_0 (x) +\sum_{k=1}^n [G_k (x)-g_{k-1} (x)],\quad 0\leq x<\infty \eex$$ and Superior series Discriminant method $g _n$ uniformly convergent. Set the Limit function to $g (x) $, then $g $ continuous and satisfy $$\bex g (x) =f (x) +\int_0^x H (t) g (t) \rd T. \eex$$ Order $$\bex g (x) =\int_0^x H (t) g (t) \rd T, \eex$$ Then $$\beex \bea g ' (x) &=h (x) g (x) =h (x) [F (x) +g (x)],\\ G ' (x)-H (x) g (x) &=h (x) f (x), \ \sez{e^{-\int_0^x h (t) \rd t}g (x )} ' &=e^{-\int_0^x h (t) \rd t}h (x) f (x), \ e^{-\int_0^x h (t) \rd T} G (x) &=\int_0^x e^{-\int_0^s H (t) \rd T}h (s) f (s) \ Rd s,\\ G (x) &=\int_0^x e^{\int_s^x H (t) \rd T}h (s) f (s) \rd s,\\ G (x) &=f (x) +\int_0^x e^{\int_s^x H (t) \rd T}h (s) f (s) \rd S. \eea \eeex$$   

Six. ($ $) Set $f (x) $ is a continuous function with a lower bound or upper bound on the $\bbr$ and has a positive number $a $ makes $$\bex f (x) +a\int_{x-1}^x F (t) \rd T \eex$$ constant. Verification: $f (x) $ is constant.

proof: May be set $f $ has a lower bound, so $\dps{m=\inf_{x\in [0,\infty]}f (x)}$, $$\bex g (x) =f (x)-M\GEQ 0. \eex$$ according to test instructions, $\exists\ c\in\bbr,\st$ $$\bee\label{435:6:eq} \bea f (x) +a\int_{x-1}^x F (t) \rd t&=c,\\ g (x) +a\int_{x-1} ^x g (t) \rd t&=f (x)-m+a\int_{x-1}^x [F (t)-m]\rd t=c-(a+1) m\equiv M\geq 0,\\ g (x) &=m-a\int_{x-1}^x g (t) \rd T. \eea \eee$$ the right end can be guided, and both ends can be derivative simultaneously, $$\beex \bea G ' (x) &=-a[g (x)-G (x-1)],\\ [E^{ax}g (x)] ' &=ag (x-1) \geq 0\\ &\ra m=g (x) +a\ Int_{x-1}^x g (t) \rd T     =g (x) +a\int_{x-1}^x e^{at}g (t) \cdot e^{-at}\rd t\\ &\quad\quad\ \ & Nbsp;       \leq g (x) +ae^{ax}g (x) \int_{x-1}^x e^{-at}\rd t\\ &\quad\quad\ \         =g (x) e^a,\\ &\ra g (x) \geq me^{-a}\\ &\ra 0=\inf_{x\in[0,\ Infty)}g (x) \geq me^{-a}\\ &\ra 0=m=g (x) +a\int_{x-1}^x g (t) \rd t\quad\sex{g (t) \geq 0}\\ &\ra g\equiv 0. \eea \eeex$$ 

[Home Squat University Mathematics Magazine] NO. 435 session Seventh Chinese College Students Mathematics Contest Preliminary Examination Question (Mathematics class, October 2015) reference answer

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.