Provide a few introductory miscellaneous examples for the first time to touch matlab people pondering. The beauty of Matlab lies in the simplicity of its code and its use in various industries. tiredness and product and upper and lower triangles
CLC
Clear
a=magic (9)
cumsum (a)
prod (a,2)% by line Triu (
a)% upper triangular
tril (ones (4,4), -1)
a=[2 1-1;2 1 0;1-1 1]
b=[1-1 3;4 3 2]
x=b/a x*a a*b
'
Factoring, character definition, determinant, simplification, Tong, etc brief Operation
CLC
Clear
syms percent x defines variable
f=factor (x^9-1)% factorization
x=sym (' x ')
m=sym (' [a,b;c,d] ')
det ( Magic (3))
det (M)
%simple% simplify
simplify (cos (x) ^2+sin (x) ^2) Simple
(cos (x) ^2+sin (x) ^2)
[N, D]=numden (f)% Tong
factor (sym (' 239239893849832 '))
% expand% expand
% collect
% similar terms Find variables
a small exploration of t distribution
CLC
Clear
syms y
syms n x H
f=exp ((-(n+x^2) *y^2)/2 *y^ (n)
pretty (y)
h=int (F,y,0,inf)
Simplify (Y)
a=n^ (N/2)/(2^ (N/2-1/2)) y=h*a P=gamma
((n+1)/2)/SQRT (n) * (1+x^2/n) ^ ((n+1)/2)
pretty (f)
y-p
Simplify (p)
determination of Planck constant in the experiment of large objects
x1=[4.57 3.96 3.58 2.94 1.90 0.86 0.12-0.73-1.24-1.73-1.91-1.95-2.00-2.05-2.10-2.15-2.40-2.50-2.55-2.65] Y1=[ 42.6*10^-9 38.0*10^-9 33.5*10^-9 30.0*10^-9 18.5*10^-9 10.7*10^-9 61.4*10^-10 23.5*10^-10 70.1*10^-11 38.0*10^-12-20*10 ^-12-21.5*10^-12-25.5*10^-12-26.5*10^-12-30.4*10^-12-30*10^-12-37.5*10^-12-40*10^-12-40.7*10^-12-40*10^-12] X2= [4.5 3.5 2.51 1.50 0.50-0.17-0.7-1.14-1.36-1.40-1.44-1.50-1.58-1.68-1.77-1.78-1.86-1.95-2.09-2.17-2.27-2. 30-2.42-2.52-2.63-2.74-2.80-2.74-2.85] y2=[13.4*10^-9 11.1*10^-9 85.1*10^-10 58.3*10^-10 29.1*10^-10 13.8*10^-10 4 4*10^-11 37.6*10^-12 27.7*10^-13 4.8*10^-13-26.7*10^-13-59.9*10^-13-81.2*10^-13-98*10^-13-99.5*10^-13-99.6*10^-13 -13.8*10^-13-14.5*10^-13-14.2*10^-13-15.2*10^-13-14.2*10^-13-14.4*10^-13-14.1*10^-13-14.82*10^-13-16.8*10^-13- 13.9*10^-13-14.0*10^-13-14.4*10^-13-14.4*10^-13] x3=[4.64 3.48 2.70 2.01 1.72 1.56 1.15 0.97 0.30-0.03-1.18-1.21-1. 2-1.25-1.33-1.36-1.48-1.53-1.56-1.64-1.72-1.81-1.91] y3=[11.6*10^-9 10.0*10^-9 82.0*10^-10 62.0*10^-10 58.5*10^-10 50.6*10^-10 40.1*10^-10 34.0* 10^-10 17.0*10^-10 10.3*10^-10 57.7*10^-13 9.3*10^-13-6.9*10^-13-20.0*10^-13-55*10^-13-32.8*10^-13-59.5*10^-13- 67.7*10^-13-70.2*10^-13-73.8*10^-13-82.6*10^-13-82.0*10^-13-88.5*10^-13] x4=[4.58 3.98 2.95 2.68 1.96 0.18-0.38-0.5 5-0.65-0.68-0.73-0.78-0.8-0.83-0.87-0.95-1.00-1.08-1.43-1.60-1.75] y4=[14.3*10^-9 12.2*10^-9 10.0*10^-9 88.3* 10^-10 71.7*10^-10 16.3*10^-10 16.7*10^-11 31.7*10^-12 90.0*10^-13 68.0*10^-13 15.0*10^-13-13.0*10^-13-30.9*10^-13-34 *10^-13-42*10^-13-50.5*10^-13-60*10^-13-66.7*10^-13-72.3*10^-13-70.0*10^-13-74.2*10^-13] X5=[4.07 3.72 1.97 1.28 0. 0.21-0.29-0.53-0.58-0.61-0.66-0.68-0.75-0.78-0.83-0.90-1.00-1.13-1.23-1.38-1.47] Y5=[62.1*10^-10 53.3*1 0^-10 40.3*10^-10 24.4*10^-10 14.7*10^-10 69.2*10^-11 84.8*10^-12 60.2*10^-13 33.9*10^-13-9.6*10^-13-7.3*10^-13-11.3* 10^-13-18.4*10^-13-21.9*10^-13-24.7*10^-13-26.6*10^-13-30.0*10^-13-29.5*10^-13-28.7*10^-13-28.0*10^-13-31.5*10^-13] X6=[4.51 3.97 3.61 2.41 1.99 0 .65 0.02-0.48-0.57-0.60-0.64-0.67-0.74-0.82-0.86-0.89-0.96-1.03-1.07-1.35-1.43-1.65-1.82-2.02-2.26-2.61 -2.82-3.2] y6=[11.4*10^-10 10.0*10^-10 85.9*10^-11 65.2*10^-11 57.0*10^-11 23.5*10^-11 73.8*10^-12 33.6*10^-13 10.0*10 ^-13 6.0*10^-13 3.7*10^-13 1.9*10^-13-0.4*10^-13-1.1*10^-13-1.5*10^-13-2.0*10^-13-2.3*10^-13-2.3*10^-13-2.3*10^- 13-2.4*10^-13-1.7*10^-13-2.2*10^-13-2.5*10^-13-3.2*10^-13-3.2*10^-13-3.0*10^-13-3.1*10^-13-3.5*10^-13] X7=[4.50 3.11 1.81 1.16 0.25-0.20-0.44-0.48-0.54-0.62-0.65-0.68-0.71-0.74-0.77-0.78-0.97-1.21] y7=[14.9*10^-9 11.2*10^ -9 77.6*10^-10 60.0*10^-10 17.2*10^-10 32.5*10^-11 35.8*10^-12 21.0*10^-12 89.8*10^-13-10.2*10^-13-28.0*10^-13-58.0* 10^-13-63.0*10^-13-72.0*10^-13-67.4*10^-13-82.2*10^-13-92.0*10^-13-90.2*10^-13] Plot (X1,Y1) plot (X2,Y2) plot (X3, Y3) plot (x4,y4) plot (x5,y5) hold on
Plot (X6,Y6) hold on plot (X7,Y7)
the use of ksdensity
CLC
Clear
X=[randn (30,1); 5+randn (30,1)];% produces 60 sample values
[F,xi]=ksdensity (x);% returns XI more than X quantity
subplot ( 2,2,1);
Plot (x);
Title (' Sample Data ');
Subplot (2,2,2);
Plot (xi,f);
Title (' Probability density distribution (PDF) ');
Subplot (2,2,3);
f= ksdensity (x,xi);
Plot (xi,f);
Subplot (2,2,4);
f= ksdensity (x,xi, ' function ', ' CDF ');
Plot (xi,f);
- use of Gplot
x=[0,0;1,0</