Basic probability distribution basic Concept of probability distributions 8:normal distribution

Source: Internet
Author: User
Tags cos

PDF version

PDF & CDF

The probability density function is $ $f (x; \mu, \sigma) = {1\over\sqrt{2\pi}\sigma}e^{-{1\over2}{(X-\MU) ^2\over\sigma^2 }}$$ the cumulative distribution function is a defined by $ $F (x; \mu, \sigma) = \phi\left ({x-\mu\over\sigma}\right) $$ where $$\phi (z) = {1\over\sqrt{2\pi}} \int_{-\infty}^{z}e^{-{1\over2}x^2}\ dx$$

Proof:

$$ \begin{align*} \int_{-\infty}^{\infty}f (x; \mu, \sigma) &= \int_{-\infty}^{\infty}{1\over\sqrt{2\pi}\sigma}e^ {-{1\over2}{(X-\MU) ^2\over\sigma^2}}\ dx\\ &= {1\over\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}e^{-{1\over2}{( X-\MU) ^2\over\sigma^2}}\ dx\\ &= {1\over\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-{1\over2}y^2}\ dy\quad\quad\ Quad\quad\quad (\mbox{setting}\ y={x-\mu\over\sigma} \rightarrow dx = \sigma dy) \ \end{align*} $$ let $I = \int_{-\infty}^ {\infty}e^{-{1\over2}y^2}\ dy$, then $$ \begin{eqnarray*} i^2 &=& \int_{-\infty}^{\infty}e^{-{1\over2}y^2}\ dy \int_{-\infty}^{\infty}e^{-{1\over2}x^2}\ dx\\ &=& \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-{1\ Over2} (y^2+x^2)}\ Dydx\quad\quad\quad\quad (\mbox{setting}\ x=r\cos\theta, y=r\sin\theta) \ \ &=& \int_{0}^{\ infty}\int_{0}^{2\pi}e^{-{1\over2}r^2}\ Rd\theta Dr \ & & (\mbox{double integral}\ \iint\limits_{d}f (x, y) \ Dxdy = \iint\limits_{d^*}f (R\cos\theta, R\sin\theta) r\ Drd\theta) \ \ &=&Amp 2\pi\int_{0}^{\infty}re^{-{1\over2}r^2}\ dr\\ &=& -2\pi e^{-{1\over2}r^2}\big|_{0}^{\infty}\\ &=& 2\ Pi \end{eqnarray*} $$ Hence $$\int_{-\infty}^{\infty}f (x; \mu, \sigma) = {1\over\sqrt{2\pi}} \cdot\sqrt{2\pi} = 1$$

Standard Normal Distribution

If $X $ is normally distributed with parameters $\mu$ and $\sigma^2$, then $ $Z = {x-\mu\over\sigma}$$ is normally distribut Ed with parameters 0 and 1.

Proof:

An important conclusion is the IF $X $ is normally distributed with parameters $\mu$ and $\sigma^2$, then $Y = AX + b$ are Normally distributed with parameters $a \mu + b$ and $a ^2\sigma^2$. Denote $F _{y}$ as the cumulative distribution function of $Y $: $$ \begin{align*} F_{y} (x) &= p (Y \leq x) \ &= p (aX + b \leq x) \ &= P (x \leq {x-b\over a}) \ \ &= f_{x}\left ({x-b\over a}\right) \end{align*} $$ where $F _{x} (x) $ is T He cumulative distribution function of $X $. By differentiation, the probability density function of $Y $ is $$ \begin{align*} f_{y} (x) &= {1\over A}f_{x}\left ({x-b \over a}\right) \ &= {1\over\sqrt{2\pi}a\sigma}e^{-{1\over2}{({X-b\over A}-\mu) ^2\over \sigma^2}}\\ &= {1\ OVER\SQRT{2\PI} (A\sigma)}e^{-{1\over2}{(X-b-a\mu) ^2\over a^2\sigma^2}}\\ &= {1\over\sqrt{2\pi} (A\sigma)}e^{-{ 1\over2}{(x (b + a\mu)) ^2\over (A\sigma) ^2}} \end{align*} $$ which shows that $Y $ was normally distributed with parameters $a \mu + b$ and $a ^2\sigma^2$. According to the ABove result, we can easily deduce that $Z = {x-\mu\over\sigma}$ follows the normally distributed with parameters 0 and 1.

Mean

The expected value is $ $E [X] = \mu$$

Proof:

$$ \begin{align*} e[z] &= \int_{-\infty}^{\infty}xf_{z} (x) \ Dx\quad\quad\quad \quad\quad \quad\quad (\mbox{setting }\ z={x-\mu\over\sigma}) \ \ &= {1\over\sqrt{2\pi}}\int_{-\infty}^{\infty}xe^{-{1\over2}x^2}\ dx\\ &=-{1\over \sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-{1\over2}x^2}\ d\left (-{1\over2}x^2\right) \ &=-{1\over\sqrt{2\pi}}e^ {-{1\over2}x^2}\big|_{-\infty}^{\infty}\\ &= 0 \end{align*} $$ Hence $$ \begin{align*} e[x] &= E\left[\sigma Z+\m u\right]\\ &= \sigma e[z] + \mu\\ &= \mu \end{align*} $$

Variance

The variance is $$\mbox{var} (X) = \sigma^2$$

Proof:

$$ \begin{align*} E\left[z^2\right] &= {1\over\sqrt{2\pi}}\int_{-\infty}^{\infty}x^2e^{-{1\over2}x^2}\ dx\quad\ Quad\quad \quad\quad \quad\quad\quad\quad\quad (\mbox{setting}\ z={x-\mu\over\sigma}) \ &= {1\over\sqrt{2\pi}}\ Left (-xe^{-{1\over2}x^2}\big|_{-\infty}^{\infty} +\int_{-\infty}^{\infty}e^{-{1\over2}x^2}\ dx\right) \quad\quad\ Quad (\mbox{integrating by parts}) \ &= {1\over\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-{1\over2}x^2}\ dx \quad\ Quad\quad\quad\quad\quad\quad (\mbox{standard normal distribution}) \ &= 1 \end{align*} $$ the integral by parts: $ $u = x,\ dv = xe^{-{1\over2}x^2}\ dx$$ $$\implies du = dx,\ v = \int xe^{-{1\over2}x^2}\ dx =-e^{-{1\over2}x^2}$$ $$\implies \int x^2e^{-{1\over2}x^2}\ DX =-xe^{-{1\over2}x^2} +\int e^{-{1\over2}x^2}\ dx$$ Hence $$\mbox{var} (x) = \mbox{Var} (\ Sigma Z + \mu) = \sigma^2\mbox{var} (z) = \sigma^2$$

Examples

1. If $X $ is a normal random variable with parameters $\mu = 3$ and $\sigma^2 = 9$, find (a) $P (2 < X <5 Data-blogge r-escaped-b= "" > 0) $; (c) $P (| x-3| > 6) $.

Solution:

(a) $$ \begin{align*} p (2 < X < 5) &= P\left ({2-3\over3} < {X-3\over 3} < {5-3\over 3}\right) \ \ &= P \left (-{1\over3} < Z < {2\over3}\right) \ &= \phi\left ({2\over3}\right)-\phi\left (-{1\over3}\right) = 0.3780661 \end{align*} $$ R Code:

(b) $$ \begin{align*} P (X > 0) &= p\left ({X-3\over3} > {0-3\over3}\right) \ &= p\left (Z > -1\right) \ &am P;= 1-\phi ( -1) = 0.8413447 \end{align*} $$ R Code:

1-pnorm (-1) # [1] 0.8413447

(c) $$ \begin{align*} P (| x-3| > 6) &= p (x > 9) + P (x <-3) \ &= p\left ({X-3\over3} > {9-3\over3}\right) + p\left ({X-3\over3} < {- 3-3\over3}\right) \ &= p (Z > 2) + P (Z <-2) \ &= 1-\phi (2) + \phi ( -2) = 0.04550026 \end{align*} $$ R Code:

2. Let $X $ is normally distributed with the standard deviation $\sigma$. Determine $P \left (| x-\mu| \geq 2\sigma\right) $. Compare with Chebyshev ' s inequality.

Solution:

$$ \begin{align*} p\left (| x-\mu| \geq 2\sigma\right) &= p\left ({x-\mu\over\sigma} \geq 2\right) + p\left ({x-\mu\over\sigma} \leq-2\right) \ \ &=2\ CDOT p\left ({x-\mu\over\sigma} \leq-2\right) = 2\phi ( -2) \end{align*} $$ R Code:

2 * Pnorm (-2) # [1] 0.04550026

By Chebyshev ' s inequality, the probability is $ $P \left (| x-\mu| \geq 2\sigma\right) \leq {1\over2^2}=0.25$$ which is a weaker estimation.

3. Let $X $ is a normally distributed random variable with expected value $\mu=5$. Assume $P (X \leq 0) = 0.1$. What is the variance of $X $?

Solution:

$$ \begin{align*} P (X \leq 0) &= p\left ({x-5\over\sigma} \leq {0-5\over\sigma}\right) \ \ &= P\left (Z \leq-{5\ove R\sigma}\right) = 0.1 \end{align*} $$ Hence by using R:

$$-{5\over\sigma} = -1.281552\rightarrow \sigma^2 = 15.22186$$

4. A normally distributed random variable $X $ satisfies $P (x \leq 0) = 0.4$ and $P (x \geq 10) = 0.1$. What's the expected value $\mu$ and the standard deviation $\sigma$?

Solution:

$ $P (x \leq 0) = 0.4\rightarrow \phi\left ({-\mu\over\sigma}\right) = 0.4$$ and $ $P (x \geq) = 0.1\rightarrow\phi\left ({10 -\mu\over \sigma}\right) = 0.9$$ Thus $$\begin{cases}{-\mu\over\sigma}=-0.2533471\\ {10-\mu\over \sigma}=1.281552 \end {Cases}\rightarrow \begin{cases}\mu = 1.650579\\ \sigma= 6.515088 \end{cases}$$ R Code:

5. Consider independent random variables $X \sim N (1, 3) $ and $Y \sim N (2, 4) $. What is $P (X + Y \leq 5) $?

Solution:

$X +y$ is still normally distributed with parameters $$\mu = \mu_1 + \mu_2 = 3$$ and $$\sigma^2 = \sigma_1^2 + \sigma_2^2 = 7$$ Hence $$ \begin{align*} P (X + Y \leq 5) &= p\left (Z \leq {5-3 \over\sqrt{7}}\right) \ \ &= \phi\left ({2 \over\ sqrt{7}}\right) = 0.7751541 \end{align*} $$ R Code:

Pnorm (2/SQRT (7)) # [1] 0.7751541

Reference

    1. Ross, S. (2010). A first Course in probability (8th Edition). Chapter 5. Pearson. Isbn:978-0-13-603313-4.
    2. Brink, D. (2010). Essentials of Statistics:exercises. Chapter 5 & 15. isbn:978-87-7681-409-0.

Basic probability distribution basic Concept of probability distributions 8:normal distribution

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.