C + + implementation Search binary tree

Source: Internet
Author: User

two fork Find Tree (English:binarysearch tree), also known as the binary searching trees, ordered binary tree (English: Ordered binary tree), sort binary trees (English: sorted binary), Refers to an empty tree or a two-fork tree with the following properties:

    • The left subtree of any node is not empty, then the value of all nodes on the left subtree is less than the value of its root node;

    • The right subtree of any node is not empty, then the value of all nodes on the right subtree is greater than the value of its root node;

    • The left and right subtrees of any node are also two-fork search tree;

    • There are no nodes with key values equal.


#pragma  oncetemplate<class K, class V>struct BSTreeNode{K _key; v _value; bstreenode<k, v>* _left; bstreenode<k, v>* _right; Bstreenode (Const k& key, const v& value): _key (Key), _value (value), _left (NULL), _right (NULL) {}};template<class k, class v>class bstree{typedef bstreenode<k,  v> node;public:bstree (): _root (NULL) {}bool insert (const k& key, const  v& value) {if  (null == _root)//If the empty tree {_root = new node (key,  value); return true;} node* parent = null; node* cur = _root;//determining the location of the insertion node while  (cur) {if  (key < cur->_key) {Parent  = cur;cur = cur->_left;} else if  (Key > cur->_key) {parent = cur;cur = cur->_right;} else//already exists key{return false;}} Insert Node if  (Key > parent->_key) Parent->_right = new node (key, value); elseparent- >_left = new node (Key, value);} Insert recursive notation Bool insertr (const k& key, const v& value) {return _ INSERTR (_root, key, value);} BOOL&NBSP;_INSERTR (Node*& root, const k& key, const v& value) { if  (null == root) {root = new node (key, value); return true;} if  (Key > root->_key) return _insertr (root->_right, key, value); else  if  (Key < root->_key) return _insertr (Root->_left, key, value); Elsereturn false;} Node* find (Const k& key) {node* cur = _root;while  (cur) {if  (key  > cur->_key) cur = cur->_right;else if  (key < cur->_key ) Cur = cur->_left;elseReturn cur;} Return null;} Find recursive notation Node* findr (const k& key) {Return _findr (_root, key);} Node* _findr (Node* root, const k& key) {if  (null == root) return  NULL;if  (Key > root->_key) Return _findr (Root->_right, key);else  if  (Key < root->_key) Return _findr (root->_left, key); elsereturn root;} Bool remove (Const k& key) {node* parent = null; node* cur = _root;//determine where to delete the node while  (cur) {if  (key > cur->_key) {Parent  = cur;cur = cur->_right;} else if  (Key < cur->_key) {parent = cur;cur = cur->_left;} Else{break;}} if  (null == cur)//without the node {return false;} node* del;if  (null == cur->_left)//delete node left child is empty {del = cur;//deleted node is root node if  ( Null == parent){_root = _root->_right;} else{if  (Cur == parent->_left) parent->_left = cur->_right;elseparent->_ Right = cur->_right;}} else if  (null == cur->_right)//Delete node right child is empty {del = cur;if  (NULL ==  parent) {_root = _root->_left;} else{if  (Cur == parent->_left) parent->_left = cur->_right;elseparent->_ Right = cur->_left;}} else//Delete the left and right child of the node is not empty, find the leftmost node of the tree in place of the node to delete {parent = cur; node* leftmost = cur->_right;while  (Leftmost->_left) {parent = leftmost; Leftmost = leftmost->_left;} Del = leftmost;cur->_key = leftmost->_key;cur->_value = leftmost->_ value;if  (Leftmost == parent->_left) parent->_left = leftmost->_right; Elseparent->_right = leftmost->_right;} Return true;} Remove recursive notation Bool remover (cOnst k& key) {return _remover (_root, key);} Bool _remover (Node*& root, const k& key) {if  (NULL == root) return false;if  (Key > root->_key) {return _remover (root->_right, key);} else if  (Key < root->_key) {return _remover (root->_left, key);} else{node* del = root;if  (null == root->_left) {root = root->_ Right;} else if  (null == root->_right) {root = root->_left;} else{node* leftmost = root->_right;while  (Leftmost->_left) {leftmost =  Leftmost->_left;} Swap (Root->_key, leftmost->_key); swap (root->_value, leftmost->_value); return _ Remover (root->_right, key);} Delete del;} Return true;} Middle sequence traversal recursive notation Void inorder () {_inorder (_root);} Void _inorder (Node* root) {if  (null == root) Return;_inorder (Root->_left);cout<<root->_key<< " "; _inorder (root->_right);} protected:node* _root;}; Void test () {bstree<int, int> t;int a[] = {5, 3, 4, 1,  7, 8, 2, 6, 0, 9};for  (size_t i = 0; i < sizeof (a)/sizeof (a[0]); ++i) {t.insertr (a[i], i);} Cout<<t.findr (8)->_key<<endl;cout<<t.findr (5)->_key<<endl;cout<<t.findr (9) ->_key<<endl;t.remover (8); T.remover (7); T.remover (9); T.remover (6); T.remover (5); T.remover (3); T.RemoveR ( 1); T.remover (4); t.remover (0); T.remover (2); T.inorder ();}

650) this.width=650; "src=" Http://s1.51cto.com/wyfs02/M01/83/9F/wKiom1d4sPXxpt87AADKmXua-BM400.png "title=" Bstree.png "alt=" Wkiom1d4spxxpt87aadkmxua-bm400.png "/>

This article is from the "zgw285763054" blog, make sure to keep this source http://zgw285763054.blog.51cto.com/11591804/1795294

C + + implementation Search binary tree

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.