Coursera Open Class Machine Learning: Linear Algebra Review (optional)

Source: Internet
Author: User

This section mainly reviews some simple knowledge about linear algebra.

Matrix and vector Matrix

Number of $ m \ times N $ A _ {IJ} (I = ,..., m; j = 1, 2 ,..., n) $ the number table of $ M $ row $ N $ column, which is called the matrix of $ M $ row $ N $ column, for short, $ m \ times N $ matrix. It is recorded:

$ \ Matrix {A }=\begin {bmatrix} A _ {11} & A _ {12} & \ cdots & A _ {1N} \ CRA _ {21 }& A _ {22} & \ cdots & A _ {2n} \ Cr \ vdots & \ vdots \ CRA _ {M1} & A _ {m2} & \ cdots & A _ {Mn} \ Cr \ end {bmatrix} $

Note: $ \ matrix {A }=\ matrix {A }_{ m \ times N }= (A _ {IJ}) _ {M \ times n} $

$ \ Matrix {A }_{ IJ} = $ "$ I, j $ entry" in the $ I ^ {th} $ row, $ J ^ {th} $ column.

Vector

The so-called $ N $ dimension vector is the matrix of $ n \ times 1 $:

$ \ Matrix {x }=\begin {bmatrix} X _ 1 \ CRX _ 2 \ Cr \ vdots \ CRX _ n \ Cr \ end {bmatrix} $

Two starting methods of vectors:

$ \ Matrix {y }=\begin {bmatrix} y _ 1 \ cry _ 2 \ Cr \ vdots \ cry _ n \ Cr \ end {bmatrix} \ matrix {y} = \ begin {bmatrix} y _ 0 \ cry _ 1 \ Cr \ vdots \ cry _ {n-1} \ Cr \ end {bmatrix} $

Math may prefer the first type of expression, while programmers may prefer the second type of expression.

Basic matrix operations Addition and subtraction

$ \ Matrix {A \ pm B }=\begin {bmatrix} A _ {11} \ pm B _ {11} & A _ {12} \ pm B _ {12} & \ cdots & A _ {1N} \ pm B _ {1N} \ CRA _ {21} \ pm B _ {21} & A _ {22} \ pm B _ {22} & \ cdots & A _ {2n} \ pm B _ {2n} \ Cr \ vdots & \ vdots \ CRA _ {M1} \ pm B _ {M1} & A _ {m2} \ pm B _ {m2} & \ cdots & A _ {Mn} \ pm B _ {Mn} \ Cr \ end {bmatrix} $ $

Multiply number by Matrix

$ \ Lambda \ times \ matrix {A }=\ matrix {A} \ times \ Lambda =\begin {bmatrix} \ Lambda \ times a _ {11} & \ Lambda \ times A _ {12} & \ cdots & \ Lambda \ times a _ {1N} \ Cr \ Lambda \ times a _ {21} & \ Lambda \ times a _ {22} & \ cdots & \ Lambda \ times a _ {2n} \ Cr \ vdots & \ vdots \ Cr \ Lambda \ times a _ {M1} & \ Lambda \ times A _ {m2} & \ cdots & \ Lambda \ times a _ {Mn} \ Cr \ end {bmatrix} $

Division is simply multiplied by $ \ frac {1} {\ Lambda} $, all of which are the same.

Matrix vector multiplication

$ \ Begin {bmatrix} A _ {11} & A _ {12} & \ cdots & A _ {1N} \ CRA _ {21} & A _ {22 }& \ cdots & A _ {2n} \ Cr \ vdots & \ vdots \ CRA _ {M1} & A _ {m2} & \ cdots & A _ {Mn} \ Cr \ end {bmatrix} \ times \ begin {bmatrix} X _ 1 \ CRX _ 2 \ Cr \ vdots \ CRX _ n \ Cr \ end {bmatrix} = \ begin {bmatrix} A _ {11} \ times X _ 1 + A _ {12} \ times X _ 2 + \ cdots + A _ {1N} \ times X _ n \ CRA _ {21} \ times X _ 1 + A _ {22} \ times X _ 2 + \ cdots + A _ {2n} \ times X _ n \ Cr \ vdots \ CRA _ {M1} \ times X _ 1 + A _ {m2} \ times X _ 2 + \ cdots + A _ {Mn} \ times X _ n \ Cr \ end {bmatrix} $

Note: $ \ matrix {A} \ times \ matrix {x }=\ matrix {y} $

In fact, a closer look is another way of expressing the equations:

$ \ Begin {cases} A _ {11} \ times X _ 1 + A _ {12} \ times X _ 2 + \ cdots + A _ {1N} \ times X _ n = Y _ 1 \ CRA _ {21} \ times X _ 1 + A _ {22} \ times X _ 2 + \ cdots + A _ {2n} \ times X _ n = Y _ 2 \ Cr \ vdots \ CRA _ {M1} \ times X _ 1 + A _ {m2} \ times X _ 2 + \ cdots + A _ {Mn} \ times X _ n = Y _ m \ Cr \ end {cases} $

Matrix Multiplication

$ \ Matrix {A} \ times \ matrix {B} $

$ \ Matrix {B} $ can be viewed: $ \ begin {bmatrix} X _ {11} \ Cr X _ {21} \ Cr \ vdots \ Cr X _ {N1} \ Cr \ end {bmatrix} & \ begin {bmatrix} X _ {12} \ Cr X _ {22} \ Cr \ vdots \ Cr X _ {N2} \ Cr \ end {bmatrix }&\ cdots & \ begin {bmatrix} X _ {1 k} \ Cr X _ {2 k} \ Cr \ vdots \ Cr X _ {nk} \ Cr \ end {bmatrix }\ end {bmatrix }=\ begin {bmatrix} \ matrix {X _ 1} & \ matrix {X _ 2} & \ cdots & \ matrix {X _ k} \ end {bmatrix} $

$ \ Matrix {A} \ times \ matrix {B} =\begin {bmatrix} A \ times \ matrix {X _ 1} & A \ times \ matrix {X _ 2} & \ cdots & A \ times \ matrix {X _ k} \ end {bmatrix} $

$ \ Matrix {A _ {M \ times N }}\ times \ matrix {B _ {n \ times K }}=\ matrix {C _ {M \ times k }} $

The main focus is the subscript, which cannot be multiplied if it does not match.

Matrix multiplication rule

$ (\ Matrix {A} \ times \ matrix {B }) \ times \ matrix {C }=\ matrix {A} \ times (\ matrix {B} \ times \ matrix {c}) $

$ \ Matrix {A} \ times (\ matrix {B} + \ matrix {c }) = \ matrix {A} \ times \ matrix {B} + \ matrix {A} \ times \ matrix {c} $

$ (\ Matrix {B} + \ matrix {c }) \ times \ matrix {A }=\ matrix {B} \ times \ matrix {A} + \ matrix {c} \ times \ matrix {A} $

In general, multiplication does not satisfy the exchange law:

$ \ Matrix {A} \ times \ matrix {B} \ not = \ matrix {B} \ times \ matrix {A} $

Special Matrix

$ \ Matrix {I }=\ matrix {I _ {n \ times N }}=\ begin {bmatrix} 1 & 0 & \ cdots & 0 & 0 \ Cr0 & 1 & \ cdots & 0 & 0 \ Cr \ vdots & \ vdots \ Cr0 & 0 & \ cdots & 1 & 0 \ Cr0 & 0 & \ cdots & 0 & 1 \ Cr \ end {bmatrix} $

For any matrix $ \ matrix {A} $:

$ \ Matrix {A} \ times \ matrix {I }=\ matrix {I} \ times \ matrix {A }=\ matrix {A} $

Inverse Matrix and inverted Matrix Inverse Matrix

$ \ Matrix {A} \ times \ matrix {A ^ {-1 }}=\ matrix {A ^ {-1 }}\ times \ matrix {A} = \ matrix {i} $

Inverted Matrix

$ \ Matrix {B }=\ matrix {A ^ t} $

$ \ Matrix {B _ {IJ }}=\ matrix {A _ {Ji} $

References

This article mainly references the following materials:

  • Andrew Ng, machine learning

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.