"Data Structure"--sorting algorithm--1.2, binary tree sort

** First, on the wiki diagram: two fork Tree sort wiki**figure one or two sorting a fork treeIi. Description

**two fork Find Tree** ( English:*binary*search tree), also known as the binary searching trees, ordered binary trees ( English:ordered binarytree), Sort binary trees ( English:sorted binarytree) refers to an empty tree or a two-fork tree with the following properties:

- If the left subtree of any node is not empty, the value of all nodes on the left subtree is less than or equal to the value of its root node;
- If the right subtree of any node is not empty, the value of all nodes on the right subtree is greater than the value of its root node;
- The left and right subtrees of any node are also two-fork lookup trees, respectively.
- No nodes with key values equal ( English:No Duplicate Nodes). Binary lookup trees have the advantage over other data structures in finding and inserting less time complexity. is O (log n). Binary lookup tree is a basic data structure used to construct more abstract data structures, such as collections, multiset, associative arrays, and so on.

The process of finding X in binary find tree B is:

- If B is an empty tree, the search fails, otherwise:
- If x equals the value of the data field of the root node of B, the lookup succeeds;
- If x is less than the value of the data field of the root node of B, the left subtree is searched; otherwise:
- Find the right subtree.

Third, Java program

public class Ordertree {public static void main (string[] args) {/** * ***4*** * *2***6* * 1*3*5*7 * */int[] A = {4 , 2,1,3,6,5,7,8,9}; BTree root = new BTree (); Createorder (A, root); System.out.println ("\npre Order:"); Preorder (root); System.out.println ("\nmid Order:"); Midorder (root); System.out.println ("\nlast Order:"); Lastorder (root); List<point> points = new arraylist<point> (); Convert the node of the tree to the coordinate int floors = Totalfloor (root); System.out.println ("\nfloors:" +floors); Printtree (root, points, 0, -1,floors); Sort coordinates according to Row,col easy to print collections.sort (points); Print at 5 characters per point (coordinate system conversion required), justifies when data==-1 * int row = 0; StringBuilder sb = new StringBuilder (); int totallength = 1* (Squat (2, floors)-1); ForPoint p:points) {if (row = = P.row) {sb.append (Printtimes ("*", 1*p.col-sb.length ())); Sb.append (PrintWidth ("+p.data, 1)"); }else{if (Sb.length () < Totallength) {Sb.append (Printtimes ("*", Totallength-sb.length ( ))); } System.out.println (Sb.tostring ()); SB = new StringBuilder (); row++; Sb.append (Printtimes ("*", 1*p.col-sb.length ())); Sb.append (PrintWidth ("+p.data, 1)"); }} if (Sb.length () < Totallength) {Sb.append (Printtimes ("*", Totallength-sb.length ())); } System.out.println (Sb.tostring ()); } static int Totalfloor (BTree root) {if (root = null) return 0; return Internalloop (root, 0); } static int Internalloop (BTree root,int floor) {if (root! = null) {floor++; int left = Internalloop (Root.left,Floor); int right = Internalloop (root.right, floor); Return Math.max (left, right); } else return floor; } static string Printtimes (string s,int time) {StringBuilder sb = new StringBuilder (); for (int i=0;i<time;i++) {sb.append (s); } return sb.tostring (); } static string PrintWidth (string s, int width) {if (s = = null) {return printtimes ("", width); }else{if (s.length () < width) {return new StringBuilder (s). Append (Printtimes ("*", width-s. Length ()). ToString (); }else{return s.substring (0,width); }}} Static class point implements comparable<point>{public point (int row,int col,int data) { This.row = row; This.col = col; This.data = data; } int row = 0; int col = 0; int data =-1; @Override Public INT CompareTo (Point O) {if (This.row = = O.row) {if (col = = O.col) return 0; else if (Col < o.col) {return-1; }else{return 1; }}else if (Row < O.row) {return-1; }else{return 1; }}} static void Printtree (BTree root,list<point> points,int row,int col,int floors) { if (root = null) {int inter = squat (2, floors-1)-1; if (col = =-1) {col = Inter; }/** * ***0*** * *0***0* * 0*0*0*0 * */Points.Add (new Point (Row, col, Root.data)) ; Printtree (Root.left,points,row+1, col-((inter-1)/2) -1,floors-1); Printtree (Root.right,points,row+1,col +(inter-1)/2+1, floors-1); }} static int squat (int s,int b) {if (b = = 0) return 1; int result = 1; for (int i=0;i<b; i++) {result *=s; } return result; } static void preorder (BTree root) {if (root = = null) {return; } System.out.print ("-" +root.data); Preorder (Root.left); Preorder (root.right); } static void Midorder (BTree root) {if (root = null) return; Midorder (Root.left); System.out.print ("-" +root.data); Midorder (Root.right); } static void Lastorder (BTree root) {if (root = null) return; Lastorder (Root.left); Lastorder (Root.right); System.out.print ("-" +root.data); }//Left small, right large, equal when put left static void Createorder (int[] A,btree root) {if (a = = NULL | | a.length = = 0) return; for (int i=0;i<a.length;i++) {if (i==0) {root.data = A[i]; }else{BTree leaf = new BTree (); Leaf.data = A[i]; Insert (ROOT,LEAF); }}}} static void Insert (BTree root,btree leaf) {if (Root.data = = Leaf.data) {//= drop left if (r Oot.left = = null) {root.left = leaf; }else{Insert (root.left,leaf); }}else if (Root.data > Leaf.data) {//> put left if (root.left = = null) {Root.left = leaf ; }else{Insert (root.left,leaf); }}else{//< put right if (root.right = = null) {root.right = leaf; }else{Insert (root.right,leaf); }}} static class btree{BTree left; BTree right; int data; }}

Favorite:Implementation of the Java two fork tree(This simple point is easier to read);

Java Basics Review Notes 10 data structure-sort binary tree

"Data Structure"--sorting algorithm--1.3, binary tree sort