Demonstration sample code for solving optimization problem of matlab genetic algorithm

Source: Internet
Author: User
Tags abs

The code is as follows:

function M_main () Clearclcmax_gen = 100;% perform algebra pop_size = 100;% population size Chromsome = 10;% chromosome length pc = 0.9;% crossover probability pm = 0.25;% mutation Probability Gen = 0;% Statistical algebra% Initialization init = 40*rand (pop_size, chromsome) -20;pop = Init;fit = obj_fitness (POP); [Max_fit, Index_max] = max (FIT); maxfit = Max_fit; [Min_fit, Index_min] = min (fit), Best_indiv = Pop (Index_max,:);% iteration operation while gen<max_gen    Gen = gen+1;  & nbsp   BT (gen) = max_fit;    If  maxfit<max_fit;        Maxfit = max_fit;  &nbs P     Pop (index_min,:) = Pop (Index_max,:);        Best_indiv = Pop (Index_max,:);  &nbs P  end    Best_indiv_tmp (gen) = Pop (Index_max);    Newpop = GA (pop, PC, PM, chromsome, fit);    Fit = obj_fitness (newpop);    [Max_fit, Index_max] = max (FIT);    [Min_fit, index_min] = min (fit); &NB Sp   pop = newpop;    trace (1, gen) = max_fit;    Trace (2, gen) = SUM (FIT)./length (fit); end% execution result [F_max gen_ct] = max (BT)% is the maximum value and the algebraic maxfitbest_indiv% drawing% bthold Onplot (trace (1,:), '. G: ');p lot (Trace (2,:), '. R '), title ( ' Experimental result graph ') xlabel (' Iteration number/generation '), Ylabel (' Best Fit (max) '),% coordinate notation plot (gen_ct-1, 0:0.1:f_max+1, ' C ');% draw Maximum text (gen_ct, f_max+1  ,   ' Max ') hold off    function  [fitness] = obj_fitness (pop)        % fitness calculation function          [R C] = size (pop);        x = pop;        fitness = zeros (R, 1);        For i = 1:r            for j = 1:c      &NBSP ;         Fitness (i, 1) = Fitness (i, 1) +sin (sqrt (ABS (40*x (i))) +1-abs (x (i))/20.0;      & nbsp     end        end    end    function Newpop = GA (pop, PC, PM, chromsome  , fit)         pop_size = size (pop, 1);       % Roulette selection         PS = Fit/sum (FIT);  &nbsP      Pscum = Cumsum (PS),%size (pscum)         r = rand (1, pop_size);        QW = Pscum*ones (1, pop_size);        selected = SUM (Pscum*ones (1, pop_size) <ones (pop_size, 1) *r) +1 ;        Newpop = Pop (selected,:);       % cross         if pop_s IZE/2 ~= 0            pop_size = pop_size-1;        end     &N Bsp          For i = 1:2:pop_size-1            while pc>rand  & nbsp             C_PT = round (8*rand+1);                p  OP_TP1 = Newpop (i,:);p op_tp2 = Newpop (i+1,:);                Newpop (i+1, 1:c_pt) = POP_TP1 (1, 1:c_pt);                Newpop (i, c_pt+1:chromsome) = POP_TP2 (1, c_p T+1:chromsome);            end                  &NBS P  end       % variation         for i = 1:pop_size            If pm>rand                M_PT = 1+round (9*rand);        & nbsp        Newpop (i, m_pt) = 40*rand-20;            end        end    EndEnd


Demonstration sample code for solving optimization problem of matlab genetic algorithm

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.