Contents
- I. Emptying environment variables
- II. Training set/test set generation
- Iii. Normalization of data
- Iv. BP neural network creation, training and simulation test
- V. Performance evaluation
- VI. Drawing
I. Emptying environment variables
All CLC
II. Training set/test set generation
1. Import data
Concrete_data.mat
2. Randomly generated training sets and test sets
temp = randperm (Size (attributes,2)); % Training Set--80 samples P_train = attributes (:, temp (1:80)); T_train = Strength (:, temp (1:80)); % Test Set--23 samples P_test = attributes (:, temp (81:end)); T_test = Strength (:, temp (81:end)); N = size (p_test,2);
Iii. Normalization of data
[P_train, Ps_input] = Mapminmax (p_train,0,1);p _test = Mapminmax (' Apply ', p_test,ps_input); [T_train,ps_output] = Mapminmax (t_train,0,1);
Iv. BP neural network creation, training and simulation test
1. Create a network
NET = NEWFF (p_train,t_train,11);
2. Set Training parameters
Net.trainParam.epochs = 1000;net.trainparam.goal = 1E-3;NET.TRAINPARAM.LR = 0.01;
3. Training Network
NET = Train (Net,p_train,t_train);
4. Simulation Test
T_sim = Sim (net,p_test);
5. Inversion of data
T_sim = Mapminmax (' reverse ', t_sim,ps_output);
V. Performance evaluation
1. Absolute error errors
Error = ABS (t_sim-t_test)./t_test;
2. Decision Factor r^2
R2 = (n * SUM (t_sim. * t_test)-sum (t_sim) * SUM (t_test)) ^2/((N * SUM ((T_sim). ^2)-(SUM (T_sim)) ^2) * (n * SUM (t_test) . ^2)-(SUM (t_test)) ^2));
3. Comparison of results
result = [t_test ' T_sim ' ERROR ']
result = 28.1600 31.1291 0.1054 52.6500 53.0643 0.0079 30.9700 26.2469 0.1525 38.4600 38.0986 0.0094 41.1400 39.8364 0.0317 30.8300 30.8207 0.0003 36.1900 35.7525 0.0121 32.7100 33.8095 0.0336 41.0100 40.0879 0.0225 32.8400 33.3301 0.0149 33.9100 31.6726 0.0660 38.1900 38.3960 0.0054 26.4200 27.5678 0.0434 17.1900 18.4602 0.0739 35.5200 35.2201 0.0084 49.9700 51.0821 0.0223 48.7700 48.8715 0.0021 46.3600 46.2920 0.0015 31.5000 29.0295 0.0784 42.0800 42.0742 0.0001 36.4600 39.2970 0.0778 44.4800 44.6282 0.0033 58.5300 53.3348 0.0888
VI. Drawing
Figureplot (1:n,t_test,' b:* ', 1:n,t_sim,' R-o ') Legend (' real value ',' predictive value') Xlabel ( ' Prediction Sample ') ylabel (' concrete compressive strength ') string = {' Test set concrete compressive strength prediction result comparison '; [ ' r^2= ' num2str (R2)]};title (String)
Published with MATLAB? r2015a
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
Machine learning and its MATLAB implementation--from foundation to practice--HW3