MATLAB toolbox for dimensionality loss ction dimensionality reduction methods include:
Principal Component Analysis (PCA)
• Probabilistic PCA
• Factor Analysis (FA)
• Sammon Mapping
• Linear discriminant analysis (LDA)
• Multidimensional Scaling (MDS)
• Isomap
• Landmark Isomap
• Local linear embedding (LLE)
• Laplacian eigenmaps
• Hessian lle
• Local tangent space alignment (ltsa)
• Conformal eigenmaps (extension of LLE)
• Maximum variance unfolding (extension of LLE)
• Landmark mvu (landmarkmvu)
• Fast maximum variance unfolding (faw.vu)
• Kernel PCA
• Generalized discriminant analysis (GDA)
• Diffusion maps
• Neighborhood preserving embedding (NPE)
• Locality preserving projection (LPP)
• Linear local tangent space alignment (lltsa)
• Stochastic proximity embedding (SPE)
• Multilayer autoencoders (training by RBM + Backpropagation or by an evolutionary algorithm)
• Local linear coordination (LLC)
• Manifold charting
• Coordinated Factor Analysis (CFA)
• Gaussian process latent variable model (gplvm)
• Stochastic neighbor embedding (SNE)
• Symmetric SNE (symsne)
• New: T-distributed stochastic neighbor embedding (t-SNE)
• New: neighborhood Components Analysis (NCA)
• New: maximally collapsing metric Learning (MCML)
: Http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
MATLAB Dimensionality Reduction toolbox