Python implementation of a simple Bayesian classifier

Source: Internet
Author: User

1 #-*-coding:utf-8-*-2 " "3 >>> C = Classy ()4 >>> c.train ([' CPU ', ' RAM ', ' ALU ', ' io ', ' bridge ', ' disk '], ' architecture ')5 True6 >>> C.train ([' Monitor ', ' mouse ', ' keyboard ', ' microphone ', ' headphones '], ' input_devices ')7 True8 >>> c.train ([' Desk ', ' chair ', ' cabinet ', ' lamp '], ' office furniture ')9 TrueTen >>> my_office = [' CPU ', ' monitor ', ' mouse ', ' chair '] One >>> c.classify (my_office) A (' input_devices ', -1.0986122886681098) - ... - >>> C = Classy () the >>> c.train ([' CPU ', ' RAM ', ' ALU ', ' io ', ' bridge ', ' disk '], ' architecture ') - True - >>> C.train ([' Monitor ', ' mouse ', ' keyboard ', ' microphone ', ' headphones '], ' input_devices ') - True + >>> c.train ([' Desk ', ' chair ', ' cabinet ', ' lamp '], ' office furniture ') - True + >>> my_office = [' CPU ', ' monitor ', ' mouse ', ' chair '] A >>> c.classify (my_office) at (' input_devices ', -1.0986122886681098) - ... - " " -  -  fromCollectionsImportCounter - ImportMath in  - classclassifiernottrainedexception (Exception): to      +     def __str__(self): -         return "Classifier is not trained." the  * classClassy (object): $     Panax Notoginseng     def __init__(self): -Self.term_count_store = {} theSelf.data = { +             'Class_term_count': {}, A             'beta_priors': {}, the             'Class_doc_count': {}, +         } -Self.total_term_count =0 $Self.total_doc_count =0 $          -     deftrain (self, Document_source, class_id): -      the         " " - Trains the classifier.Wuyi          the         " " -Count =Counter (Document_source) Wu         Try: - self.term_count_store[class_id] About         exceptKeyerror: $SELF.TERM_COUNT_STORE[CLASS_ID] = {} -          forTerminchCount: -             Try: -Self.term_count_store[class_id][term] + =Count[term] A             exceptKeyerror: +Self.term_count_store[class_id][term] =Count[term] the         Try: -self.data['Class_term_count'][CLASS_ID] + = Document_source.__len__() $         exceptKeyerror: theself.data['Class_term_count'][CLASS_ID] = Document_source.__len__() the         Try: theself.data['Class_doc_count'][CLASS_ID] + = 1 the         exceptKeyerror: -self.data['Class_doc_count'][CLASS_ID] = 1 inSelf.total_term_count + = Document_source.__len__() theSelf.total_doc_count + = 1 the self.compute_beta_priors () About         returnTrue the          the     defclassify (self, document_input): the         if  notSelf.total_doc_count:Raiseclassifiernottrainedexception () +          -Term_freq_matrix =Counter (document_input) theArg_max_matrix = []Bayi          forclass_idinchself.data['Class_doc_count']: thesummation =0 the              forTerminchDocument_input: -                 Try: -Conditional_probability = (Self.term_count_store[class_id][term] + 1) theConditional_probability = conditional_probability/(self.data['Class_term_count'][CLASS_ID] +self.total_doc_count) theSummation + = term_freq_matrix[term] *Math.log (conditional_probability) the                 exceptKeyerror: the                      Break -Arg_max = summation + self.data['beta_priors'][class_id] the Arg_max_matrix.insert (0, (class_id, Arg_max)) theArg_max_matrix.sort (key=LambdaX:x[1]) the         return(Arg_max_matrix[-1][0], arg_max_matrix[-1][1])94          the     defcompute_beta_priors (self): the         if  notSelf.total_doc_count:Raiseclassifiernottrainedexception () the         98          forclass_idinchself.data['Class_doc_count']: AboutTMP = self.data['Class_doc_count'][CLASS_ID]/Self.total_doc_count -self.data['beta_priors'][CLASS_ID] = Math.log (TMP)

Python implementation of a simple Bayesian classifier

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.