Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can is thought of as a dict-like container for Series objects. The primary pandas data structure
Parameters: |
data : NumPy ndarray (structured or homogeneous), dict, or DataFrame
Dict can contain Series, arrays, constants, or List-like objects
index : index or Array-like
Index to use for resulting frame. Would default to Np.arange (n) If no indexing information part of input data and no index provided
columns : Index or Array-like
Column labels to use for resulting frame. Would default to Np.arange (n) If no column labels is provided
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer
Copy : boolean, default False
Copy data from inputs. Only affects dataframe/2d Ndarray input
|
See Also
-
DataFrame.from_records
-
constructor from tuples, also record arrays
-
DataFrame.from_dict
-
From Dicts of Series, arrays, or dicts
-
DataFrame.from_items
From
-
sequence of (key, value) pairs
pandas.read_csv
, pandas.read_table
,pandas.read_clipboard
1. Start with a side dish.
Create based on dictionary
fromPandasImportSeries, DataFrameImportPandas as PDImportNumPy as NPD= {'col1': [+],'col2': [3,4]}DF= PD. DataFrame (data=d)Print(DF)Print(df.dtypes)#col1 col2#0 1 3#1 2 4#col1 Int64#col2 Int64#Dtype:object
Ndarrary based on the Numy
DF2 = PD. DataFrame (Np.random.randint (low=0, high=10, Size= (5, 5)), columns=['a','b','C','D','e'])Print(DF2)#a b c d e#0 0 2 4 7 0#1 6 7 3 4 1#2 5 3 3 8 7#3 0 9 4 3 4#4 7 4 7 0 0