1. Optimize your query for query caching
Most MySQL servers have query caching turned on. This is one of the most effective ways to improve sex, and this is handled by the MySQL database engine. When many of the same queries are executed multiple times, the results of these queries are placed in a cache so that subsequent identical queries do not have to manipulate the table directly to access the cached results.
2. EXPLAIN your SELECT query
Use the EXPLAIN keyword to let you know how MySQL handles your SQL statements. This can help you analyze the performance bottlenecks of your query statement or table structure.
EXPLAIN's query results will also tell you how your index primary key is being leveraged, how your data tables are searched and sorted.
3. Use LIMIT 1 when only one row of data is used
When you query a table, you already know that the result will only have one result, but because you might need to fetch the cursor, or you might want to check the number of records returned.
In this case, adding LIMIT 1 can increase performance. This way, the MySQL database engine stops searching after it finds a piece of data, instead of continuing to look for the next record-compliant data.
4. Jianjian Index for search words
The index does not necessarily give the primary key or the unique field. If you have a field in your table that you will always use to do a search, then index it.
5. Use a fairly typed example in the Join table and index it
If your application has many join queries, you should confirm that the fields of join in two tables are indexed. In this way, MySQL internally initiates the mechanism for you to optimize the SQL statement for join.
Also, the fields that are used for join should be of the same type.
6. Never ORDER by RAND ()
Want to disrupt a returned data row? Randomly pick a data? I don't know who invented this usage, but many novices like it. But you do not understand how horrible the performance problem is.
If you really want to disrupt the data rows that you return, there are n ways you can achieve this. This use only degrades the performance of your database exponentially. The problem here is that MySQL will have to execute the rand () function (which consumes CPU time), and this is done for each row of records to be recorded and then sorted. Even if you use limit 1 it doesn't help (because it's sorted).
7. Avoid SELECT *
The more data you read from the database, the slower the query becomes. And, if your database server and Web server are two separate servers, this also increases the load on the network transport.
8. Always set an ID for each table
We should set an ID for each table in the database as its primary key, and the best is an int type (recommended to use unsigned), and set the automatically added Auto_increment flag.
Even if you have a field in the users table that has a primary key called "email", you don't have to make it a primary key. Use the VARCHAR type to degrade performance when the primary key is used. In addition, in your program, you should use the ID of the table to construct your data structure.
Also, under the MySQL data engine, there are some operations that need to use primary keys, in which case the performance and settings of the primary key become very important, such as clustering, partitioning ...
In this case, there is only one exception, which is the "foreign key" of the "association table", that is, the primary key of the table, which consists of the primary key of several other tables. We call this the "foreign key". For example: There is a "student table" has a student ID, there is a "curriculum" has a course ID, then, "Score table" is the "association table", which is associated with the student table and curriculum, in the score table, student ID and course ID is called "foreign key" it together to form a primary key.
9. Use ENUM instead of VARCHAR
The ENUM type is very fast and compact. In fact, it holds the TINYINT, but it appears as a string on its appearance. In this way, using this field to make a list of options becomes quite perfect.
If you have a field such as "gender", "Country", "nation", "state" or "department", you know that the values of these fields are limited and fixed, then you should use ENUM instead of VARCHAR.
11. Use not NULL where possible
Unless you have a very special reason to use null values, you should always keep your fields not NULL. This may seem a bit controversial, please look down.
First, ask yourself how big the difference is between "Empty" and "null" (if it is int, that is 0 and null)? If you think there is no difference between them, then you should not use NULL. (You know what? in Oracle, NULL and Empty strings are the same!)
Do not assume that NULL does not require space, that it requires extra space, and that your program will be more complex when you compare it. Of course, this is not to say that you cannot use NULL, the reality is very complex, there will still be cases where you need to use a null value.
Prepared statements
Prepared statements is much like a stored procedure, a collection of SQL statements running in the background, and we can derive many benefits from using Prepared statements, whether it's a performance issue or a security issue.
Prepared statements can check some of the variables you've bound so that you can protect your program from "SQL injection" attacks. Of course, you can also manually check these variables, however, manual checks are prone to problems and are often forgotten by programmers. When we use some framework or ORM, this problem is better.
In terms of performance, this gives you a considerable performance advantage when the same query is used multiple times. You can define some parameters for these prepared statements, and MySQL will parse only once.
13. Non-buffered queries
Normally, when you execute an SQL statement in your script, your program will stop there until the SQL statement is returned, and your program continues to execute. You can use unbuffered queries to change this behavior.
14. Save the IP address as UNSIGNED INT
Many programmers create a VARCHAR (15) field to hold IP in the form of a string rather than a shaped IP. If you use plastic to store it, you only need 4 bytes, and you can have a fixed-length field. And, this will bring you the advantage of querying, especially when you need to use such a where condition: IP between Ip1 and IP2.
We must use unsigned INT because the IP address uses an entire 32-bit unsigned shaping.
15. Fixed-length tables are faster
If all the fields in the table are fixed length, the entire table is considered "static" or "Fixed-length". For example, there are no fields of the following type in the table: Varchar,text,blob. As long as you include one of these fields, the table is not a fixed-length static table, so the MySQL engine will handle it in a different way.
Fixed-length tables can improve performance because MySQL searches faster because these fixed lengths are easy to calculate the offset of the next data, so the nature of reading will be fast. And if the field is not fixed, then every time you want to find the next one, you need the program to find the primary key.
Also, fixed-length tables are more likely to be cached and rebuilt. However, the only side effect is that a fixed-length field wastes some space, because the field is set to allocate so much space whether you use it or not.
16. Vertical Segmentation
"Vertical Segmentation" is a method of turning a table in a database into several tables, which reduces the complexity of the table and the number of fields for optimization purposes. (Previously, in a bank project, saw a table with more than 100 fields, very scary)
17. Splitting a large DELETE or INSERT statement
If you need to perform a large DELETE or INSERT query on an online website, you need to be very careful to avoid your actions to keep your entire site from stopping accordingly. Because these two operations will lock the table, the table is locked, the other operations are not in.
Apache will have a lot of child processes or threads. So, it works quite efficiently, and our servers don't want to have too many child processes, threads and database links, which is a huge amount of server resources, especially memory.
If you lock your watch for a period of time, say 30 seconds, for a site with a high level of access, the 30-second cumulative number of access processes/threads, database links, and open files may not only allow you to park the Web service crash, but may also leave your entire server hanging up.
So, if you have a big deal, you make sure you split it, using the LIMIT condition is a good way.
18. The smaller the column the faster
For most database engines, hard disk operations can be the most significant bottleneck. So it's very helpful to have your data compact, because it reduces access to the hard drive.
19. Choose the right storage engine
There are two storage engines MyISAM and InnoDB in MySQL, each with a few pros and cons. Cool Shell before the article "Mysql:innodb or MyISAM?" Discussion and this matter.
MyISAM is suitable for applications that require a large number of queries, but it is not very good for a lot of write operations. Even if you just need to update a field, the entire table will be locked and other processes will be unable to manipulate the read process until the read operation is complete. In addition, MyISAM's calculations for SELECT COUNT (*) are extremely fast.
The InnoDB trend will be a very complex storage engine, and for some small applications it will be slower than MyISAM. He is it supports "row lock", so in the writing operation more time, will be more excellent. Also, he supports more advanced applications, such as: transactions.
20. Using an Object-relational mapper (relational Mapper)
With ORM (Object relational Mapper), you can gain reliable performance gains. All the things an ORM can do, can be written manually. However, this requires a senior expert.
The most important thing about ORM is "Lazy Loading", that is to say, only when the need to take the value of the time to really do. But you also need to be careful about the side-effects of this mechanism, because this is likely to degrade performance by creating many, many small queries.
ORM can also package your SQL statements into a single transaction, which is much faster than executing them alone.
21. Be careful with "permalink"
The purpose of the permanent link is to reduce the number of times the MySQL link is recreated. When a link is created, it will always be in a connected state, even if the database operation is finished. And since our Apache has started reusing its child processes-that is, the next HTTP request will reuse Apache's subprocess and reuse the same MySQL link.
PHP Manual: Mysql_pconnect ()
In theory, this sounds very good. But from personal experience (and most people), this function creates more trouble. Because, you only have limited number of links, memory problems, file handles, and so on.
And, Apache runs in an extremely parallel environment, creating a lot of processes. This is why this "permanent link" mechanism is not working well. Before you decide to use permanent link, you need to think about the architecture of your entire system.
MySQL Optimization method---On-line data collation record