1 Using C,cbind,rbind binding variables
Get four columns of data before WINGCRD,TARSUS,HEAD,WT
Each column contains 8 data, and you can continue to connect the variable via c
Birddata <-C (WINGCRD,TARSUS,HEAD,WT) birddata[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3 19.7 20.8 20.3 20.8 21.5[ 20.6 21.5 31.2 30.4 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8 15.2[29] 15.5 15.6 15.6 15.7
Birddata is a single vector with a length of 32, and the symbol [1],[15],[29] does not need to consider different realities of computers. This is just a single vector, and R does not differentiate which of these values belong to which variable. Pass:
ID <-C (1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4) ID <-Rep (c (1,2,3,4), each = 8) ID <- Rep (1:4,each = 8)
These three expressions have the same effect.
ID <-Rep (1:4,each = 8) ID [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
A <-seq (from =1, to = 4,by = 1) Rep (A,each = 8)
Effect:
A <-seq (from =1, to = 4,by = 1) Rep (A,each = 8) [1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 Var Names <-C ("Wingcrd", "Tarsus", "Head", "Wt") Id2 <-rep (Varnames,each = 8) varnames <-C ("Wingcrd", "Tarsus", "head "," Wt ") Id2 <-rep (Varnames,each = 8) id2[1]" WINGCRD "" WINGCRD "" WINGCRD "" WINGCRD "" WINGCRD "" WINGCRD "" WINGCRD "[8]" Wi NGCRD "Tarsus" " Tarsus" "Tarsus" "Tarsus" "Tarsus" "Tarsus" [All] "tarsus" "Tarsus" " Head "Head" "Head" "Head" "head" [+] "head" "Head" " Head" "wt" "WT" "WT" "WT" [+] "wt" "WT" "WT" "WT"
Req (varnames,8):
Rep (varnames,8) [1] "WINGCRD" "Tarsus" "Head" "WT" "WINGCRD" "Tarsus" "Head" [8] "WT" " WINGCRD "Tarsus" " Head" "WT" "WINGCRD" "Tarsus" [[] "Head" "WT" " WINGCRD" "Tarsus" " Head " wt" "WINGCRD" [+] "tarsus" "Head" "WT" "WINGCRD" " Tarsus" " Head" "WT" [] "WINGCRD" "Tarsus" " Head" "Wt"
The Cbind function outputs the combined variable as a column
Z <-cbind (wingcrd,tarsus,head,wt) z wingcrd tarsus Head wt[1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8,] 55.0 21.5 NA 15.7
Access the first column of Z
Z[,1][1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0z[1:8,1][1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0
Access the first line of Z
Z[1,]WINGCRD Tarsus head Wt 59.0 22.3 31.2 9.5 z[1,1:4]wingcrd tarsus Head Wt 59.0 22.3 31.2
The same access method can be used:
Z[1,]z[1,1:4]z[1,1]z[,2:3]x <-z[4,4]y <-z[,4]w <-z[,3] #得到第三列的数据D <-z[,c (1,3,4)] #得到1, 3, 4 columns of all data e <-Z[, C ( -1,-3)] #负号表示排除第一第三列
Display the dimensions of Z
Dim (z) Dim (z) [1] 8 4
View only the number of z rows
Nrows <-Dim (Z) [1]nrows[1] 8
Rbind is similar to the Cbind function, except that the former represents data in the form of rows, which represent data in columns
Z2 <-rbind (WINGCRD,TARSUS,HEAD,WT) Z2 [, 1] [, 2] [, 3] [, 4] [, 5] [, 6] [, 7] [, 8]WINGCRD 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0Tarsus 22.3 19.7 20.8 20.3 20.8 21.5 20.6 21.5Head 31.2 30.4 30.6 30.3 30.3 30.8 32.5 nawt 9.5 13 .8 14.8 15.2 15.5 15.6 15.6 15.7
Using vectors to represent data
W <-vector (length = 8) w[1] <-59w[2] <-55w[3] <-53.5w[4] <-55w[5] <-52.5w[6] <-57.5w[7] <-5 3W[8] <-55w[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0
Description
After entering W <-vector (length = 8), the direct re-entry of W will get a false response value.
You must enter the value of all elements before you can enter W to view the data
Data can be viewed via w[1],w[1:4],w[2:6],w[-2],w[c, etc.)
Combining data through matrices
Dmat <-matrix (nrow = 8,ncol = 4) Dmat [, 1] [, 2] [, 3] [, 4][1,] na na na na[2,] na na Na na[3,] na na na na[4,] na na na na[5,] na na Na Na[6,] Na Na na na[7,] na na na na[8,] na na Na na
Initialize matrix
dmat[,1] <-C (59,55,53.5,55,52.5,57.5,53,55) dmat[,2] <-C (22.3,19.7,20.8,20.3,20.8,21.5,20.6,21.5) Dmat[,3] <-C (31.2,30.4,30.6,30.3,30.3,30.8,32.5,na) dmat[,4] <-C (9.5,13.8,14.8,15.2,15.5,15.6,15.6,15.7) Dmat [ , 1] [, 2] [, 3] [, 4][1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8,] 55.0 21.5 NA 15.7
Use the Colnames function to add a name to the column of the Matrix Dmat
Colnames (Dmat) <-C ("Wingcrd", "Tarsus", "Head", "Wt") Dmat wingcrd tarsus Head wt[1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8,] 55.0 21.5 NA 15.7
When the data is categorized by variable, you can:
DMAT2 <-As.matrix (Cbind (WINGCRD,TARSUS,HEAD,WT)) Dmat2 wingcrd tarsus Head wt[1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[ 5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8,] 55.0 21.5 NA 15.7
Using the Data.frame function to combine data
Use a data frame to combine variables with the same length, and each row of the data frame contains different observations of a uniform sample.
eg
Dfrm <-data.frame (WC = Wingcrd,ts = tarsus,hd=head,w=wt) dfrm WC TS HD W1 59.0 22.3 31.2 9.52 55.0 19.7 30.4 13.83 53.5 20.8 30.6 14.84 55.0 20.3 30.3 15.25 52.5 20.8 30.3 15.56 57.5 21.5 30.8 15.67 53.0 20.6 32.5 15 .55.0 21.5 NA 15.7
Advantages of the data frame: You can change the data based on the original data without changing it. eg
Dfrm2 <-data.frame (WC = Wingcrd,ts = Tarsus,hd=head,wsq=sqrt (Wt)) Dfrm2 WC TS HD Wsq1 59.0 22.3 31.2 3.0822072 55.0 19.7 30.4 3.7148353 53.5 20.8 30.6 3.8470774 55.0 20.3 30.3 3.8987185 52.5 20.8 30.3 3.9370046 57.5 21.5 30 .8 3.9496847 53.0 20.6 32.5 3.9496848 55.0 21.5 NA 3.962323
WT and W are different entities that verify:
RM (WT) WT
Error: Object ' Wt ' not found
DFRM$W[1] 9.5 13.8 14.8 15.2 15.5 15.6 15.6 15.7
The usual use of data frames:
Make some changes to the data after you enter data into R (remove extreme values, apply changes, add categorical variables, and so on), and then store the data in a data frame for subsequent analysis.
Using the list to combine data
With list data, each data in a list can be either a vector or a single data. The dimensions of the vectors may or may not be the same.
eg
X1 <-C (X2) <-C ("A", "B", "C", "D") X3 <-3X4 <-matrix (nrow = 2, Ncol = 2) x4[,1] <-C (+) x4[,2] <- C (3,4) Y <-list (lx1=x1,lx2=x2,lx3=x3,lx4=x4) y$lx1[1] 1 2 3
$LX 2[1] "a" "B" "C" "D"
$LX 3[1] 3
$LX 4 [, 1] [, 2][1,] 1 3[2,] 2 4
The importance of list:
The results of linear regression, generalized linear regression, T-test, etc. are usually saved in the list
M <-lm (WC ~ w,data = dfrm) m
Call:
LM (formula = WC ~ W, data = dfrm)
Coefficients:
(Intercept) W
65.5315-0.7239
The results of the slender analysis are stored in:
Names (M) [1] "coefficients" "residuals" "Effects" "Rank" [5] "fitted.values" "Assign" "QR" "Df.residual" [9] "xlevels" "call" " terms" " model"
You can access specific values in the following ways
M$coefficients (Intercept) W 65.5315140 -0.7238731 m$residuals 1 2 3 4 5 6 7 0.3452800-0.5420659-1.3181928 0.4713564-1.8114817 3.2609056-1.2390944 8 0.8332929 m$effects (Intercept) W -155.7402686 4.0250694 -1.2416235 0.5887546 - 1.6634618 3.4191327 -1.0808673
Comprehensive:
AllData <-list (birddata = Birddata,id = Id2,z = Z,varnames = varnames) alldata$birddata [1] 59.0 55.0 53.5 55.0 52.5 57 .5 53.0 55.0 22.3 19.7 20.8 20.3 20.8 21.5[15] 20.6 21.5 31.2 30.4 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8 15.2[ 15.5 15.6 15.6 15.7$id [1] "WINGCRD" "WINGCRD" "WINGCRD" "WINGCRD" "WINGCRD" "WINGCRD" "WINGCRD" [8] "WINGCRD" "Tarsus " Tarsus" " Tarsus" "Tarsus" " Tarsus" "Tarsus" [[] "Tarsus" "Tarsus" "Head" Head "Head" "Head" "Head" [+ ] "head" "Head" "head" "WT" " wt" "WT" " wt" [+] "wt" "WT" "wt" "WT" $Z wingcrd tarsus Head wt[1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8 ,] 55.0 21.5 NA 15.7$varnames[1] "WINGCRD" "Tarsus" "Head" "Wt"
Take one of these elements separately
Alldata$birddata [1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3 19.7 20.8 20.3 20.8 21.5[15] 20.6 21.5 31.2 30.4 30.6 30 .3 30.3 30.8 32.5 NA 9.5 13.8 14.8 15.2[29] 15.5 15.6 15.6 15.7alldata$id [1] "WINGCRD" "WINGCRD" "WINGCRD" "WINGC Rd "" WINGCRD "" WINGCRD "" WINGCRD "[8]" WINGCRD "" Tarsus "" Tarsus "" Tarsus "" Tarsus "" Tarsus " " Tarsus "[[]" "Tarsus" "Tarsus" "Head" "Head" "Head" "Head" "Head" [+ ] "head" "Head" "Head" "wt" "WT" "WT" "WT" [] "WT" "WT" "WT" "WT" alldata$z WINGCRD Tarsus Head wt[1,] 59.0 22.3 31.2 9.5[2,] 55.0 19.7 30.4 13.8[3,] 53.5 20.8 30.6 14.8[4,] 55.0 20.3 30.3 15.2[5,] 52.5 20.8 30.3 15.5[6,] 57.5 21.5 30.8 15.6[7,] 53.0 20.6 32.5 15.6[8,] 55.0 21.5 NA 15.7
Note: only use in list = Cannot use <-
R Learning Note "three" R Language Beginner's Guide