[Gauss Elimination] BZOJ3640:JC's Little Apple __ Math related

Source: Internet
Author: User

Not difficult to think of the problem. First set F[I][J] f[i][j] to indicate the blood volume is I I, the position of the expected probability of J J. The
introduced the equation and found that when a point a[i]=0 a[i]=0, it could not be delivered. So to each layer for elimination.
the coefficients matrix for each elimination is found to be the same, but the constants are different. You can think of the constant as a polynomial, first N3 n^3 pretreatment, and then each layer directly N2 n^2 brought into the good.
Complexity O (n3+n2∗hp) O (n^3+n^2*hp)

#include <cstdio> #include <cstring> #include <algorithm> using namespace std;
const int maxn=155,maxe=10005,maxhp=20005;
int N,m,n,hp,a[maxn],fir[maxn],nxt[maxe],son[maxe],tot;
    struct data{double A[MAXN];
    Data () {memset (a,0,sizeof (a));} 
    Data operator-(const data &b) const{data C; for (int i=0;i<=n;i++) c.a[i]=a[i]-b.a[i];
    Data operator * (const double &val) const{data C; for (int i=0;i<=n;i++) C.a[i]=a[i]*val; 
    Data operator/(const double &val) const{data C; for (int i=0;i<=n;i++) c.a[i]=a[i]/val; return c;
}} _K[MAXN],ANS[MAXN];
Double K[MAXN][MAXN]; void Gs () {for (int i=1;i<=n;i++) {int, where; double _max=0 for (int j=i;j<=n;j++) if (K[j][i]>_max) WH
        Ere=j, _max=k[j][i]; for (int j=1;j<=n;j++) swap (k[i][j],k[where][j]);
        Swap (_k[i],_k[where]);
            for (int j=i+1;j<=n;j++) {double t=k[j][i]/k[i][i]; for (int k=1;k<=n;k++) k[j][k]-=t*k[i][k];
        _k[j]=_k[j]-_k[i]*t;
        for (int i=n;i>=1;i--) {ans[i]=_k[i]* (-1);
        for (int j=i+1;j<=n;j++) ANS[I]=ANS[I]-ANS[J]*K[I][J];
    Ans[i]=ans[i]/k[i][i];
} int D[MAXN];
Double ANS,F[MAXHP][MAXN]; void Add (int x,int y) {son[++tot]=y; nxt[tot]=fir[x]; Fir[x]=tot} int main () {scanf ("%d%d%d",&n,&m,&
    HP);
    if (hp==0) return printf ("0.00000000"), 0;
    for (int i=1;i<=n;i++) scanf ("%d", &a[i]);
        for (int i=1;i<=m;i++) {int x,y; scanf ("%d%d", &x,&y); Add (x,y); d[x]++; 
    if (x!=y) Add (y,x), d[y]++; 
        for (int i=1;i<=n;i++) {k[i][i]+=1; if (a[i)) continue;
        if (i==1) _k[1].a[0]-=1;
    for (int j=fir[i];j;j=nxt[j]) if (son[j]!=n) k[i][son[j]]-=1.0/d[son[j]];
    Gs ();
    for (int i=1;i<=n;i++) f[hp][i]=ans[i].a[0];
    Ans=f[hp][n]; memset (k,0,sizeof (K)); memset (Ans) (ans,0,sizeof);
    memset (_k,0,sizeof (_k)); for (int i=1;i< =n;i++) {k[i][i]+=1;
        if (A[i]) {_k[i].a[i]-=1; continue}
    for (int j=fir[i];j;j=nxt[j]) if (son[j]!=n) k[i][son[j]]-=1.0/d[son[j]]; 
    Gs ();
            for (int i=hp-1;i>=1;i--) {for (int j=1;j<=n;j++) if (A[j]) {if (I+A[J]&GT;HP) continue;
        for (int k=fir[j];k;k=nxt[k]) if (son[k]!=n) f[i][j]+=f[i+a[j]][son[k]]/d[son[k]];
        for (int j=1;j<=n;j++) if (!a[j]) {for (int k=1;k<=n;k++) f[i][j]+=ans[j].a[k]*f[i][k];
    } Ans+=f[i][n];
printf ("%.8lf\n", ans);
for (int i=hp;i>=1;i--) {//for (int j=1;j<=n;j++) printf ("%.3lf", f[i][j));
printf ("\ n");
return 0; }
Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.