http://blog.csdn.net/naaaa/article/details/52118437Tags: windowsvs2013caffecifar102016-08-04 15:33 1316 People read Comments (1) favorite reports Classification:Caffe
Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.
1. Download vs2013, install
Http://download.microsoft.com/download/0/7/5/0755898A-ED1B-4E11-BC04-6B9B7D82B1E4/VS2013_RTM_ULT_CHS.iso
2. Download Caffe source code, unzip
Https://github.com/Microsoft/caffe
Remove the. Example behind the Caffe-master/windows CommonSettings.props.example.
3.GPU Configuration
Configuration with GPU:
Download Cuda:
Https://developer.nvidia.com/cuda-downloads
Select the downloaded version according to your video card
Double-click EXE to install
Download CUDNN:
Https://developer.nvidia.com/cudnn
Download V4 or V5 version
After decompression, respectively, the LIB, include, bin folder files are copied to the Cuda installation directory under the Lib, include, bin folder
(Default: C:\Program files\nvidia GPU Computing toolkit\cuda\vx.x)
GPU-Free configuration:
Notepad to open caffe-master/windows under Commonsettings.prop Modify:
<CpuOnlyBuild>false</CpuOnlyBuild> for <CpuOnlyBuild>true</CpuOnlyBuild>
<UseCuDNN>true</UseCuDNN> for <UseCuDNN>false</UseCuDNN>
To compile each project before setting:
Properties---Property---Configuration Properties->c/c++-> preprocessor---preprocessor definitions, adding an item cpu_only
4. Generate Libcaffe
Open the Caffe.sln under Caffe-mastetr/windows
All projects need to be libcaffe.lib, so the first one to compile this project.
Libcaffe has a lot of relevant libraries, and the project has been configured to download with NuGet.
We need to install the NuGet Package Manager and start it.
Download NuGet:
Tools, extensions and updates, online, search nuget, download NuGet package management
(You can also download Http://docs.nuget.org/consume/installing-nuget website directly, double-click Install)
Start NuGet:
Right-click Project, enable NuGet package restore.
The resulting Libcaffe will be generated under Caffe-master\build\x64\debug libcaffe.lib
(all subsequent EXE files are also generated in this directory)
5.CIFAR10 Training Data
Http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
Download data to Caffe-master\data\cifar10, unzip.
The downloaded data is in binary format and needs to be converted to LEVELDB.
Compile the Convert_cifar_data project and generate the Convert_cifar_data.exe.
Open CMD,CD to Caffe-master\build\x64\debug and enter the command (all subsequent commands are under this path):
Convert_cifar_data.exe. /.. /.. /data/cifar10/cifar-10-batches-bin. /.. /.. /data/cifar10 Leveldb
Generate Cifar10_test_leveldb and Cifar10_train_leveldb folders under the Caffe-master\data\cifar10 folder
6. Calculate the data image mean value
Compile Compute_image_mean project, generate Compute_image_mean.exe
CMD input command:
Compute_image_mean.exe. /.. /.. /data/cifar10/cifar10_train_leveldb. /.. /.. /data/cifar10/mean.binaryproto--backend=leveldb
7. Training CIFAR10 Model
Open Caffe-master\examples\cifar10\cifar10_quick_solver.prototxt File:
Modify path: Examples/cifar10 for. /.. /.. /examples/cifar10 (two places)
Modify the last behavior: solver_mode:cpu (do not change this one with the GPU)
Open caffe-master\examples\cifar10\ Cifar10_quick_train_test.prototxt file:
Modified Backend:lmdb to Backend:leveldb (two places)
Modify Mean_file: "Examples/cifar10/mean.binaryproto" for Mean_file: ". /.. /.. /data/cifar10/mean.binaryproto "(Two places)
Modify Source: "Examples/cifar10/cifar10_train_lmdb" as Source: ". /.. /.. /data/cifar10/cifar10_train_leveldb "
Modify Source: "Examples/cifar10/cifar10_test_lmdb" as Source: ". /.. /.. /data/cifar10/cifar10_test_leveldb "
Compile Caffe project, generate Caffe.exe
CMD input command: Caffe.exe train--solver=. /.. /.. /examples/cifar10/cifar10_quick_solver.prototxt Training Network
CPU training will be trained for a long time, after the completion of training Caffe-master/examples/cifar10 folder generated
Cifar10_quick_iter_4000.caffemodel.h5
Cifar10_quick_iter_4000.solverstate.h5
8. Classification of images
Create a new text file Synset_words.txt under Caffe-master\data\cifar10.
The content of the file is the category of classification contained in Cifar10, as follows:
[Plain]View PlainCopyprint?
- Airplane
- Automobile
- Bird
- Cat
- Deer
- Dog
- Frog
- Horse
- Ship
- Truck
Compile classification project, generate Classification.exe
Command Line Input:
Classification.exe. /.. /.. /examples/cifar10/cifar10_quick.prototxt. /.. /.. /examples/cifar10/cifar10_quick_iter_4000.caffemodel.h5. /.. /.. /data/cifar10/mean.binaryproto. /.. /.. /data/cifar10/synset_words.txt. /.. /.. /examples/images/cat.jpg
Will come out and classify the results, my results:
[Plain]View PlainCopy print?
- ----------prediction for. /.. /.. /examples/images/cat.jpg----------
- 0.9784-"Deer"
- 0.0100-"Cat"
- 0.0094-"Bird"
- 0.0017-"Frog"
- 0.0004-"Dog"
Reference post: http://blog.csdn.net/zb1165048017/article/details/51476516
Generate Caffe under windows+vs2013 and perform CIFAR10 classification test