Improving the pairing effect of dating sites using the K-Nearest neighbor algorithm

Source: Internet
Author: User
Tags ranges

---restore content starts---

"Machine learning" is indeed a learning Python, mastering data-related skills, a rare good book!!

Nearest neighbor algorithm source code is as follows, for the need of beginners to learn, the great god please detour.

Digital identification files

" "Created on Sep, 2010knn:k Nearest NeighborsInput:inX:vector to compare to existing dataset (1xN) Dataset:size m data set of known vectors (NxM) labels:data set labels (1xM vector) K:number of n Eighbors to comparison (should is an odd number) Output:the most popular class Label@author:pbhar Rin" " fromNumPyImport*Importoperator fromOsImportListdirdefclassify0 (InX, DataSet, labels, k): Datasetsize=Dataset.shape[0] Diffmat= Tile (InX, (datasetsize,1))-DataSet Sqdiffmat= Diffmat**2sqdistances= Sqdiffmat.sum (Axis=1) Distances= sqdistances**0.5sorteddistindicies=distances.argsort () ClassCount={}               forIinchRange (k): Voteilabel=Labels[sorteddistindicies[i]] Classcount[voteilabel]= Classcount.get (voteilabel,0) + 1Sortedclasscount= Sorted (Classcount.iteritems (), Key=operator.itemgetter (1), reverse=True)returnSortedclasscount[0][0]defCreateDataSet (): Group= Array ([[[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels= ['A','A','B','B']    returnGroup, LabelsdefFile2matrix (filename): Fr=open (filename) numberoflines= Len (Fr.readlines ())#get The number of lines in the fileReturnmat = Zeros ((numberoflines,3))#prepare matrix to returnClasslabelvector = []#Prepare labels returnFR =open (filename) index=0 forLineinchfr.readlines (): line=Line.strip () listfromline= Line.split ('\ t') Returnmat[index,:]= Listfromline[0:3] # Read the top three attribute values classlabelvector.append (int (listfromline[-1]) # reads the class label index+ = 1returnReturnmat,classlabelvectordefAutonorm (dataSet): Minvals=dataset.min (0) maxvals=Dataset.max (0) ranges= Maxvals-minvals Normdataset=zeros (Shape (dataSet)) m=Dataset.shape[0] Normdataset= Dataset-tile (Minvals, (m,1)) Normdataset= Normdataset/tile (ranges, (m,1))#element wise divide    returnnormdataset, ranges, minvalsdefdatingclasstest (): HoRatio= 0.50#Hold out 10%Datingdatamat,datinglabels = File2matrix ('DatingTestSet2.txt')#Load Data setfrom fileNormmat, ranges, minvals =autonorm (Datingdatamat) m=Normmat.shape[0] Numtestvecs= Int (m*hoRatio) Errorcount= 0.0 forIinchRange (numtestvecs): Classifierresult= Classify0 (normmat[i,:],normmat[numtestvecs:m,:],datinglabels[numtestvecs:m],3)        Print "The classifier came back with:%d, the real answer is:%d"%(Classifierresult, datinglabels[i])if(Classifierresult! = Datinglabels[i]): Errorcount + = 1.0Print "The total error rate is:%f"% (errorcount/float (numtestvecs))PrintErrorcount 

Handwritten digit recognition

# parsing Text data

def img2vector (filename):
    Returnvect = Zeros ((1,1024))    fr = open (filename) for    i in range (+):        linestr = Fr.readline ( ) for J in range (+): returnvect[0,32*i+j] = int (linestr[j]) return returnvect    
# test

def handwritingclasstest ():

Hwlabels=[] trainingfilelist= Listdir ('trainingdigits')#load the training setm =Len (trainingfilelist) Trainingmat= Zeros ((m,1024))     forIinchRange (m): Filenamestr=Trainingfilelist[i] Filestr= Filenamestr.split ('.') [0]#Take off. txtclassnumstr = Int (Filestr.split ('_') [0]) hwlabels.append (CLASSNUMSTR) trainingmat[i,:]= Img2vector ('trainingdigits/%s'%filenamestr) Testfilelist= Listdir ('testdigits')#iterate through the test setErrorcount = 0.0mtest=Len (testfilelist) forIinchRange (mtest): Filenamestr=Testfilelist[i] Filestr= Filenamestr.split ('.') [0]#Take off. txtclassnumstr = Int (Filestr.split ('_') [0]) Vectorundertest= Img2vector ('testdigits/%s'%filenamestr) Classifierresult= Classify0 (Vectorundertest, Trainingmat, Hwlabels, 3)        Print "The classifier came back with:%d, the real answer is:%d"%(Classifierresult, CLASSNUMSTR)if(Classifierresult! = classnumstr): Errorcount + = 1.0Print "\nthe total number of errors is:%d"%ErrorcountPrint "\nthe total error rate is:%f"% (Errorcount/float (mtest))

Improving the pairing effect of dating sites using the K-Nearest neighbor algorithm

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.