Recommendation system and hardware combination: Ubuntu14.04+cuda 7.5 1, installation Cuda
 
Install Caffe:git clone Https://github.com/BVLC/caffe
 
Install the Caffe Dependency pack: http://caffe.berkeleyvision.org/
 
->installation Instructions
 
->ubuntu Installation
 
->sudo apt-get Install Libprotobuf-dev Libleveldb-dev Libsnappy-devlibopencv-dev Protobuf-compiler
 
->sudo apt-get Install--no-install-recommends Libboost-all-dev
 
->sudo apt-get Install Libgflags-dev libgoogle-glog-dev liblmdb-dev 2, installing Python dependency packs
 
cython>=0.19.2
 
numpy>=1.7.1
 
scipy>=0.13.2
 
scikit-image>=0.9.3
 
matplotlib>=1.3.1
 
ipython>=3.0.0
 
h5py>=2.2.0
 
leveldb>=0.191
 
networkx>=1.8.1
 
nose>=1.3.0
 
pandas>=0.12.0
 
Python-dateutil>=1.4,<2
 
protobuf>=2.5.0
 
python-gflags>=2.0
 
pyyaml>=3.10
 
pillow>=2.3.0
 
six>=1.1.0
 
 
Cd caffeàless Python/requirements.txt
 
Sudo Apt-getinstall ... Each dependent package
 
Eg:sudo apt-getinstall Cython python-numpy python-scipy python-scikits-learn Python-matplotlibipython python-h5py Python-leveldb python-networkx python-nose python-pandaspython-dateutil python-protobuf python-gflags Python-six
 
Makefile configuration file Configuration
 
1, copy the Makefile configuration file under the Caffe folder MAKEFILE.CONFIG-EXAMPLE:CP Makefile.config-examplemakefile.config
 
>>vimmakefile.config the file for configuration changes
 
Use_leveldb
 
Use_lmdb These two are Caffe training knowledge, because Caffe training data needs to be read from the database, this database is done by LEVELDB and Lmdb.
 
>>make or make-j* (indicates that several threads are compiling Caffe, which is faster)
 
2, the ~/caffe/build folder with CMake for the compilation is entered >>cmake. (Failure modifies vim. /cmake/dependencies.cmake need RM CMakeCache.txt, then cmake again.
 
>>make or make-j* (indicates that several threads are compiling Caffe, which is faster) 3, testing
 
./build/examples/cpp_classification/classification.bin
 
Definition of Models/bvlc_reference_caffenet/deploy.prototxt//model network structure
 
Weights in the Models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel//network
 
Data/ilsvrc12/imagenet_mean.binaryproto//image preprocessing, image to mean (normalized)
 
Data/ilsvrc12/synset_words.txt//class name of each class
 
Examples/images/cat.jpg//Input image