[Jia Liwei university mathematics magazine] 322nd sets of simulation papers for Mathematics Competition Training of Gannan Normal University

Source: Internet
Author: User

 

 

Mathematical Analysis

 

 

1. known functions $ f (x) = \ ln x-Ax $, where $ A $ is a constant. if $ f (x) $ has two zeros $ x_1, x_2 $. test Certificate: $ x_1x_2> E ^ 2 $.

 

2. set the equation $ \ SiN x-x \ Cos x = 0 $ in $ (0, + \ infty) $ to resolve the $ N $ to $ x_n $. proof: $ \ Bex n \ PI + \ cfrac {\ PI} {2}-\ cfrac {1} {n \ PI} <x_n <n \ PI + \ cfrac {\ pi} {2 }. \ EEx $

 

3. discuss the consistency of $ f (x) = x \ SiN x $, $ g (x) = x \ ln x $ on $ [1, \ infty) $.

 

4. set $ f (x) $ to have a second-order continuous derivative on $ [a, B] $. The test evidence shows $ \ Xi \ In (a, B) $ make $ \ Bex F (a) + F (B) + 2f \ sex {\ frac {a + B} {2 }}+ \ frac {1} {4} (B-a) ^ 2f ''(\ XI ). \ EEx $

 

5. curved points $ \ Bex \ iint_s Z \ RD x \ RD y, \ EEx $ where $ S $ is the surface $ \ DPS {\ frac {x ^ 2} {A ^ 2} + \ frac {y ^ 2} {B ^ 2} + \ frac {z ^ 2} {C ^ 2} = 1} $, the direction is external.

 

6. set $ F $ to continuous on $ [a, B] $, $ G $ to micro on $ [a, B] $ and $ G' \ Leq 0 $. proof: $ \ Xi \ In (a, B) $ exists, making $ \ Bex \ int_a ^ B f (x) g (x) \ RD x = g () \ int_a ^ \ Xi f (x) \ RD x + g (B) \ int _ \ Xi ^ B f (x) \ RD X. \ EEx $

 

7. set $ F $ to be consistent and continuous on $ (0, \ infty) $, and to $ \ forall \ h> 0 $, $ \ DPS {\ vlm {n} f (NH)} $ exists. test Certificate: $ \ DPS {\ vlm {x} f (x)} $ exists.

 

8. set the non-negative functions on $ [0, T] $ F, G, h $ satisfies the differential inequality $ \ Bex \ cfrac {\ RD f} {\ RD t} + H \ Leq GF, \ quad 0 \ Leq t \ Leq T. \ EEx $ trial certificate: $ \ Bex F (t) + \ int_0 ^ t h (s) \ RD s \ Leq F (0) \ SEZ {1 + \ int_0 ^ T g (s) \ RD s \ cdot \ exp \ sex {\ int_0 ^ T g (s) \ RD s }}, \ quad 0 \ Leq t \ Leq T. \ EEx $

 

9. set $ f (x) $ to any order on $ \ BBR $, and $ \ Bex \ forall \ n \ In \ bbz ^ +, \ f \ sex {\ frac {1} {n} = 0. \ EEx $ test certificate: $ f ^ {(n)} (0) = 0 $.

 

10. set $ f (x) $ to micro on $ [a, B] $, $ F (a) = F (B) = 0 $, for $ \ forall \ x \ in [a, B] $, $ \ Xi \ In (a, B) $ exists, making $ \ Bex f (x) = \ frac {f'' (\ xi)} {2} (X-A) (X-B ). \ EEx $

 

11. set $ f (x) $ to be micro on $ [a, B] $ Level 2. Test Certificate: For any $ C \ In (a, B) $, $ \ Xi \ In (a, B) $ causes $ \ Bex \ frac {f'' (\ xi)} {2 }=\ frac {f ()} {(a-B) (a-c)} + \ frac {F (B)} {(B-A) (B-c )} + \ frac {f (c)} {(c-A) (C-B )}. \ EEx $

 

12. set $ F $ on $ \ BBR $ (n + 1) $ to export and test the certificate: For $ \ forall \ A \ In \ BBR $, $ \ Bex \ frac {\ RD ^ n} {\ RD x ^ n} \ SEZ {\ frac {f (x)-f ()} {X-A }}_{ x = A }=\ frac {f ^ {(n + 1)} (a)} {n + 1 }. \ EEx $

 

13. set $ f (x) $ to be exported on $ [a, B] $, and $ f' (A) = f' (B) $. test certificate: $ \ Bex \ exists \ Xi \ In (a, B), \ st f' (\ xi) (\ Xi-a) = f (\ XI) -F (). \ EEx $

 

14. try $ \ Bex \ vlm {n} n ^ 2 \ sex {x ^ \ frac {1} {n}-x ^ \ frac {1} {n + 1} }, \ quad x> 0. \ EEx $

 

15. try $ \ Bex \ vlm {n} \ sex {\ int_0 ^ \ pi x ^ {2013} \ sin ^ N x \ RD x} ^ \ frac {1 }{ n }. \ EEx $

 

16. evaluate the range of the parameter $ A, B, and C $ so that $ \ sum _ {n = 3} ^ \ infty a ^ n ^ B \ ln ^ C N $

(1) absolute convergence;

(2) Conditional convergence

(3) divergence.

 

17. the center of the ball with a radius of $ r$ is on the surface of the unit ball $ x ^ 2 + y ^ 2 + Z ^ 2 = 1 $, ask $ r$ what is the maximum surface area of the ball in the unit ball?

 

18. Set $ a> 0 $ and find the area enclosed by $ \ DPS {Y = \ frac {x ^ 3} {2a-x }}$ and $ x = 2a $.

 

19. discuss $ f (x) = x \ SiN x, x ^ \ Al \ ln x (0 <\ Al <1) $ in $ [1, \ infty) $ indicates whether it is consistent and continuous, and explains the reason.

 

20. set $ \ Bex f (x) = \ int_x ^ {x ^ 2} \ sex {1 + \ frac {1} {2 t }}^ t \ SEZ {e ^ {\ frac {1} {\ SQRT {T }}- 1} \ RD t, \ quad T> 0. \ EEx $ evaluate $ \ Bex \ vlm {n} f (n) \ sin \ frac {1} {n }. \ EEx $

 

 

Advanced Algebra

 

 

1. set $ \ mathbb {p} $ to a number field. If $ P_1 (x), \ cdots, P_r (X) $ is an irrevocable polynomial of $ r$ on the number field $ \ mathbb {p} $ with different first coefficients of $1 $. Proof: $ f (x) = P_1 (X) \ cdots P_r (x) $ there is no duplicate root in the field $ \ mathbb {p} $.

 

2. set $ V $ to the vector space composed of all real-system unary Polynomials with a number of no more than $4 $. for any polynomial on $ V $ f (x) $, divide $ f (x) with $ x ^ 2-1 $) $ the formula and remainder are $ Q (x) $ and $ R (x) $ respectively. Note $ \ Bex f (x) = Q (x) (x ^ 2-1) + R (X ). \ EEx $ set $ \ SCRA $ to map $ V $ to $ V $, so that $ \ Bex \ SCRA (f (x) = R (X ). \ EEx $ test certificate: $ \ SCRA $ is a linear transformation, and calculates it about the base $ \ sed {1, x, x ^ 2, x ^ 3, x ^ 4} $ matrix.

 

3. calculation criterion: $ \ Bex D_n =\sev {\ BA {cccccc} x_1y_1 & x_1y_2 & x_1y_3 & \ cdots & x_1y _ {n-1} & {\ x_1y_2 & x_2y_2 & x_2y_3 & \ cdots & x_2y _ {n-1} & x_2y_n \ x_1y_3 & x_2y_3 & x_3y_3 & \ cdots & x_3y _ {n-1} & \\\ vdots & \ ddots & \ vdots & \ vdots \ x_1y _ {n-1} & x_2y _ {n-1} & x_3y _ {n-1} & \ cdots & X _ {n-1} y _ {n-1} & X _ {n-1} Y_n \ x_1y_n & x_2y_n & x_3y_n & \ cdots & X _ {n-1} Y_n & x_ny_n \ EA }. \ EEx $

 

4. set $ \ BBP $ to a number field, $ f (x), g (x) \ In \ BBP [x] $. proof: $ \ BEX (f (x), g (x) = 1 \ LRA (f (x ^ N), g (x ^ n) = 1, \ EEx $ here, $ N $ is a given natural number.

 

5.

(1) If $ \ lm \ NEQ 0 $ is an feature value of matrix $ A $, then $ \ DPS {\ frac {1} {\ lm} | A |}$ is an feature value of $ A ^ * $;

(2) If $ \ Al $ is a feature vector of $ A $, $ \ Al $ is also a feature vector of $ A ^ * $;

(3) $ (AB) ^ * = B ^ * a ^ * $.

 

6. set $ W $ as the number field $ \ BBP $ on $ N $ Dimension Linear Space $ V $ of the sub-space, $ \ SCRA $ is a linear transformation of $ V $, $ \ scra w $ indicates the sub-space composed of the vectors in $ W $, so $ W_0 = W \ cap \ Ker \ SCRA $, which proves: $ \ Bex \ dim W = \ dim \ scra w + \ dim W_0. \ EEx $

 

7. set $ A $, $ E-A $, $ E-A ^ {-1} $ to reversible matrix, trial: $ \ BEX (E-A) ^ {-1} + (E-A ^ {-1}) ^ {-1} = E. \ EEx $

 

8. set $ \ SCRA $ to a linear transformation in the linear space $ V $. Note: $ \ Bex \ Ker \ SCRA =\sed {\ Al \ In V; \ SCRA \ Al = 0}, \ quad \ im \ SCRA = \ sed {\ SCRA \ al; \ Al \ In v }. \ EEx $ test certificate: $ \ Bex \ im \ SCRA \ cap \ Ker \ SCRA = \ sed {0} \ LRA \ Ker \ SCRA = \ Ker (\ SCRA ^ 2 ). \ EEx $

 

9. set $ U, W $ to two subspaces of $ N $ Dimension Linear Space $ V $, and $ \ Bex \ dim U + \ dim W = n. \ EEx $ proof: linear transformation on $ V $ \ SCRA $ makes $ \ Bex \ Ker \ SCRA = u, \ quad \ im \ SCRA = W. \ EEx $

 

10. set $ \ SCRA $ to a linear transformation on $ N $ Dimension Linear Space $ V $, and $ \ Bex \ exists \ r \ In \ bbz ^ +, \ ST \ Ker (\ SCRA ^ R) = \ Ker (\ SCRA ^ {R + 1 }). \ EEx $ test certificate: $ \ Bex \ forall \ s \ In \ bbz ^ +, \ quad \ Ker (\ SCRA ^ r) = \ Ker (\ SCRA ^ {R + S }). \ EEx $

 

11. set $ V $ to $ N $ Dimension Linear Space, $ \ SCRA $, $ \ scrb $ to two linear transformations on $ V $, and $ \ SCRA $ has $ N $ feature values that are different from each other. proof: $ \ SCRA \ scrb = \ scrb \ SCRA $ is required only when $ \ scrb $ is $ \ SCRA ^ 0 = \ scre $ (constant transformation ), $ \ SCRA $, $ \ SCRA ^ 2 $, $ \ cdots $, $ \ SCRA ^ {n-1} $ linear combination.

 

12. set $ \ SCRA $ to the linear space on the number field $ \ BBF $ V $ to the previous linear transformation. In $ \ BBF [x] $, $ \ Bex f (x) = p (x) Q (x ). \ EEx $ verification: $ \ Bex \ Ker (f (\ SCRA) = \ Ker (P (\ SCRA )) \ oplus \ Ker (Q (\ SCRA )). \ EEx $

 

13. set $ \ Bex a =\sex {\ BA {CCC} 0 & 10 & 30 \ 0 & 0 & 2010 \ 0 & 0 & 0 \ EA }. \ EEx $ test certificate: matrix equation $ x ^ 2 = B $ no solution.

 

14. set $ V $ to the finite dimension vector space on the number field $ \ BBF $, and $ \ SCRA $ to the linear transformation on $ V $. proof: $ V $ can be divided into two subspaces: Straight and $ v = U \ oplus W $, where $ U and W $ meet: for $ \ forall \ U \ In U $, $ k \ In \ bbz ^ + $ exists, making $ \ SCRA ^ K (u) = 0 $; for $ \ forall \ W \ in W, \ forall \ m \ In \ bbz ^ + $, $ w_m \ In V $ exists, make $ W = \ SCRA ^ m (w_m) $.

 

15. set $ V $ to a real number field $ \ BBR $ to $ N $ Dimension Linear Space. $ \ SCRA $ is a linear transformation on $ V $, yes $ \ SCRA ^ 2 =-\ scre $.

(1) proof: $ N $ is an even number;

(2) If $ \ scrb $ is a linear transformation on $ V $, and $ \ scrb \ SCRA = \ SCRA \ scrb $ is met, $ \ det (\ scrb) \ geq 0 $.

 

16. known Quadratic Form $ \ Bex f (x, y, z) = x ^ 2 + 3y ^ 2 + Z ^ 2 + 2bxy + 2xz + 2yz \ EEx $ the rank is $2 $. Evaluate the parameter $ B $, and pointed out the equation $ \ Bex f (x, y, z) = 4 \ EEx $ represents what kind of surface?

 

17. set $ \ SCRA $, $ \ scrb $ to two linear transformations in the $ N $ dimension linear space in a certain number field, $ \ Bex \ left \ {\ BA {ll} \ SCRA \ CIRC \ scrb = \ scrb \ CIRC \ SCRA, \ exists \ n \ In \ bbz ^ +, \ s. t. \ SCRA ^ n = \ scro. \ EA \ right. \ EEx $ proof: $ \ Bex \ SCRA + \ scrb \ mbox {reversible linear transformation} \ LRA \ scrb \ mbox {reversible linear transformation }. \ EEx $

 

18. set $ \ SCRA $ to the orthogonal transformation on the Euclidean Space $ V $, and $ \ SCRA ^ m = \ scre \ (M> 1) $. note that $ W _ \ SCRA =\sed {\ Al \ In V; \ SCRA \ Al =\al }$, $ W _ \ SCRA ^ \ perp $ is its orthogonal complement, and $ \ Bex \ forall \ Al \ In V, \ exists \ | \ beta \ in W _ \ SCRA, \ gamma \ in W _ \ SCRA ^ \ perp, \ ST \ Al = \ Beta + \ Gamma. \ EEx $ test certificate: $ \ Bex \ Beta = \ frac {1} {m} \ sum _ {I = 1} ^ m \ SCRA ^ {I-1} \ Al. \ EEx $

 

19. set $ v = \ BBC ^ {n \ times n} $ to represent $ N on the complex field $ \ BBC $. Linear Combination of the addition of the matrix and the multiplication of the number of Matrices space, $ A \ In V $, define the transform $ \ SCRA $ on $ V $ as follows: $ \ Bex \ SCRA (x) = AX-XA, \ quad \ forall \ x \ In v. \ EEx $ test certificate:

(1) $ \ SCRA $ is a linear transformation;

(2) $ \ SCRA (xy) = x \ SCRA (y) + \ SCRA (x) y $;

(3) $0 $ is an feature value of $ \ SCRA $;

(4) If $ A ^ K = 0 $, then $ \ SCRA ^ {2 k} = \ scro $.

 

20. set $ \ lm_1, \ cdots, \ lm_n $ to all feature values of $ N $ level matrix $ A $, but $-\ lm_ I \ (I = 1, 2, \ cdots, n) $ is not the feature value of $ A $. It defines a linear transformation of $ \ BBR ^ {n \ times n} $ \ Bex \ SCRA (x) = a ^ Tx + XA, \ quad \ forall \ x \ In \ BBR ^ {n \ times n }. \ EEx $

(1) test: $ \ SCRA $ is a reversible linear transformation;

(2) For any real symmetric matrix $ C $, a unique real symmetric matrix $ B $ must exist, making $ A ^ TB + BA = C $.

 

21. Set $ A and B $ to two N $ positive definite matrices. proof:

(1) If $ AB = BA $, $ AB $ is also a positive matrix;

(2) If $ A-B $ is positive, $ B ^ {-1}-a ^ {-1} $ is also positive.

 

22. Set $ N $ square matrix $ A $ positive. Reset

(1) $ B _1, \ cdots, B _n $ is any $ N $ non-zero real number. Test Certificate: matrix $ B = (A _ {IJ} B _ib_j) $ is also positive.

(2) $ B $ is $ n \ times M $ real matrix, and $ \ rank (B) = M $. Test Certificate: $ B ^ tab $ is also positive.

(3) $ B $ is $ N $ level positive definite matrix. Test Certificate: $ c = (A _ {IJ} B _ {IJ}) $ is also positive.

 

23. set $ A, B $ to $ N $, and $ A $ is a non-zero semi-Definite Matrix. $ B $ is a positive definite matrix: $ | a + B |> | B | $.

 

24. set $ A $ to $ N $ order reversible matrix. Test Certificate: orthogonal matrix exists $ p $, positive matrix $ u, v $ to make $ \ Bex a = Ru = VR. \ EEx $

 

25. set $ q $ to $ N $ positive sequence matrix, and $ x $ to $ N $ dimension column vector. Example: $ \ Bex 0 \ Leq x ^ t (q + XX ^ t) ^ {-1} x <1. \ EEx $

 

26. Set $ A $, $ B $ to a real symmetric matrix, $ A $ Positive Definite. Test Certificate: $ B $ positive definite when and only when the feature values of $ AB $ are all greater than zero.

 

27. set $ A $ to $ N $ order positive definite matrix, $ x $, $ y $ to $ N $ dimension column vector and meet $ x ^ ty> 0 $. proof matrix $ \ Bex M = a + \ cfrac {XX ^ t} {x ^ ty}-\ cfrac {Ayy ^ Ta} {y ^ Tay} \ EEx $ Zhengding.

 

28. proof: $ A = \ sex {A _ {IJ} $ is a positive definite matrix, $ \ Bex a _ {IJ} =\frac {1} {I + J-1 }. \ EEx $

 

29. set $ W $ to the sub-space of the Euclidean Space $ V $, and define the distance from $ \ Al \ In V $ to $ W $ \ RD (\ Al, W) = | \ al-\ al' | $, where $ \ al' $ is an orthogonal projection of $ \ Al $ on $ W $. set $ \ al_1, \ cdots, \ al_m $ to a group of bases for $ W $. trial certificate: $ \ Bex \ RD (\ Al, W) =\ SQRT {\ cfrac {G (\ al_1, \ cdots, \ al_m, \ Al)} {G (\ al_1, \ cdots, \ al_m )}}, \ EEx $ where $ G (\ al_1, \ cdots, \ al_m) $ is the Gram matrix of $ \ al_1, \ cdots, \ al_m $.

 

30. Set $ N $ level-2 Symmetric Matrix $ A $ to zero for the sum of all level-1 primary keys and all level-2 primary keys. Prove that $ A $ is a zero matrix.

 

31. note $ \ lm_1 (a) \ geq \ lm_2 (a) \ geq \ cdots \ geq \ lm_n (a) $ is the feature value of $ N $ level real symmetric matrix $ A $. test certificate:

(1) If $ A and B $ are real symmetric matrices and the real number $0 \ Leq A \ Leq 1 $, then for $ I = 1, 2, \ cdots, N $, $ \ Bex a \ lm_ I (A) + (1-A) \ lm_n (B) \ Leq \ lm_ I (AA + (1-A) B) \ Leq A \ lm_ I () + (1-A) \ lm_1 (B); \ EEx $

(2) If $ B $ is semi-definite, then $ \ Bex \ lm_1 (a + B) \ geq \ lm_1 (A), \ quad \ lm_n (A + B) \ geq \ lm_n (). \ EEx $

 

32. set $ A and B $ to level $ M $ and level $ N $ matrices respectively. test evidence: $ A, B $ a matrix equation $ AX = XB $ only has zero solutions.

 

33. Test Certificate: $ N $ level matrix $ X, Y $ makes $ XY-YX = e $.

 

34. if $ A (t) = (a _ {IJ} (t) $ is set, each $ A _ {IJ} (t) $ is bootable. test certificate: $ \ Bex \ frac {\ RD} {\ RD t} | A (t) | = | A (t) | \ cdot \ tr \ SEZ {A ^ {-1} (t) \ cdot \ frac {\ RD a (t) }{\ rd T }}. \ EEx $

 

35. set $ N $ level antisymmetric matrix $ A = (A _ {IJ}) $ to the determinant of $1 $. for any $ x $, calculate the determinant of $ B = (A _ {IJ} + x) $.

 

36. Set $ A $ as an orthogonal array. The feature values of $ A $ are real numbers. test example: $ A $ is a symmetric matrix.

 

37.

(1) solutions to any matrix $ A $, matrix equation $ Axa = A $;

(2) If the matrix equations $ ay = C $ and $ ZB = C $ have solutions, then the equation $ AXB = C $ has solutions.

 

38. Set $ A $, $ B $ to a real symmetric matrix, $ A $ Positive Definite. Test Certificate: $ B $ positive definite when and only when the feature values of $ AB $ are all greater than zero.

 

39. set $ F $ to a linear ing from $ \ BBC ^ {n \ times n} $ to $ \ BBC $ to meet $ F (e) = N $, and for any matrix $ a, B \ In \ BBC ^ {n \ times N }$, $ F (AB) = f (BA) $. test Certificate: $ F = \ tr $.

 

40. set $ A $ as a symmetric matrix with Linearly Independent Vectors $ X_1 and X_2 $, so that $ X_1 ^ tax_1> 0 $, $ X_2 ^ tax_2 <0 $. proof: There is a linear unrelated vector $ X_3, x_4 $ to make $ x_1, x_2, X_3, x_4 $ linear correlation, and $ X_3 ^ tax_3 = x_4 ^ tax_4 = 0 $.

[Jia Liwei university mathematics magazine] 322nd sets of simulation papers for Mathematics Competition Training of Gannan Normal University

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.