[Journal of mathematics at home University] 303rd questions about Mathematics Analysis in 2004 of Huazhong Normal University

Source: Internet
Author: User

 

 

1. ($50 '= 10' + 10' + 15' + 15' + 15' $) Calculate the following limits:

(1) $ \ DPS {\ lim _ {x \ to 0} (\ Cos x) ^ \ frac {1} {\ sin ^ 2x }}$.

(2) $ \ DPS {\ vlm {n} \ SQRT [N] {1 + \ frac {1} {2} + \ frac {1} {3} + \ cdots + \ frac {1} {n }}$.

(3) $ \ DPS {\ lim _ {x \ to + \ infty} x ^ \ frac {7} {4} \ sex {\ SQRT [4] {x + 1} + \ SQRT [4] {X-1}-2 \ SQRT [4] {x }}$.

(4) $ \ DPS {\ vlm {n} \ sin \ frac {\ PI} {2n} \ sum _ {k = 1} ^ n \ sin \ frac {k \ PI }{ N }}$.

 

Answer:

(1) $ \ beex \ Bea \ mbox {Original limit} & = \ lim _ {x \ to 0} \ SEZ {1 + (\ cos x-1 )} ^ {\ frac {1} {\ cos X-1} \ cdot \ frac {\ cos X-1} {\ sin ^ 2x }}\\ & = e ^ {\ lim _ {x \ to 0} \ frac {-\ SiN x} {2 \ SiN x \ Cos x }}\\& = e ^ {-\ frac {1} {2 }}. \ EEA \ eeex $

(2) by $ \ Bex 1 <\ SQRT [N] {1 + \ frac {1} {2} + \ cdots + \ frac {1} {n }}< \ SQRT [n] {n} \ EEx $ and $ \ Bex \ SQRT [N] {n }=\ exp \ sex {\ frac {1} {n} \ ln n} \ to 1 \ quad \ sex {n \ To \ infty} \ EEx $ knows the original limit $ = 1 $.

(3) $ \ beex \ Bea \ mbox {Original limit} & =\ LiM _ {x \ to + \ infty} x ^ 2 \ sex {\ SQRT [4] {1 + \ frac {1} {x }}+ \ SQRT [4] {1-\ frac {1} {x}-2 }\\\\=\ LiM _ {T \ 0} \ frac {\ SQRT [4] {1 + t} + \ SQRT [4] {1-T}-2} {t ^ 2} \ & = \ lim _{ T \ to 0} \ frac {\ SEZ {1 + \ frac {1} {4} X-\ frac {3} {32} x ^ 2 + O (x ^ 2 )} + \ SEZ {1-\ frac {1} {4} X-\ frac {3} {32} x ^ 2}-2} {t ^ 2} \ & = -\ frac {3} {16 }. \ EEA \ eeex $

(4) $ \ beex \ Bea \ mbox {Original limit} & =\ vlm {n} \ frac {\ sin \ frac {\ PI} {2n }{\ frac {\ pi} {2n }}\ cdot \ frac {\ PI} {2} \ cdot \ sum _ {k = 1} ^ n \ frac {1} {n} \ sin \ frac {k \ PI} {n} \ & =\ frac {\ PI} {2} \ int_0 ^ 1 \ sin \ pi x \ RD x \ & = 1. \ EEA \ eeex $

 

2. ($15 '$) set $ f (x) $, $ g (x) $ continuous on $ [a, B] $, on $ (A, B) $ inner can be imported. If $ X_1 and X_2 $ are two zeros of $ f (x) $ in the range $ [a, B] $, it is proved: $ \ Xi \ In (a, B) $ exists, so that $ \ Bex f' (\ xi) g (\ xi) + f (\ XI) g' (\ xi) = 0. \ EEx $ (original title: $ f' (\ xi) + f (\ xi) G' (\ xi) = 0 $)

 

Proof: Take $ f (x) = f (x) g (x) $, then $ F (X_1) = f (X_2) = 0 $. by the Rolle Theorem, $ \ Xi \ In (x_1, x_2) \ subset (a, B) $ causes $ \ Bex 0 = f' (\ XI) = f' (\ xi) g (\ xi) + f (\ xi) G' (\ XI ). \ EEx $

 

3. ($15 '$) set $ f (x) $ continuous on $ [a, B] \ (B> A> 0) $, on $ (A, B) $ can be imported, proving that $ \ Xi, \ ETA $ exists in $ (a, B) $ to make $ \ Bex f' (\ XI) = \ frac {\ ETA ^ 2f '(\ ETA)} {AB }. \ EEx $

 

Proof: $ \ beex \ Bea \ frac {f' (\ ETA )} {-\ frac {1} {\ ETA ^ 2 }}&=\ frac {F (B)-f ()} {\ frac {1} {B}-\ frac {1} {A }}\\\&=\ frac {F (B)-f ()} {B-a} (-AB) \\& = f' (\ xi) (-AB ). \ EEA \ eeex $

 

4. ($ 15' $) set $ f (x) $ Riann product on $ [a, B] $, proof: $ e ^ {f (x )} $ Riann can accumulate on $ [a, B] $.

 

Proof: it is bounded by $ F $ Riann product knowledge $ F $, set to $ M $, and $ \ beex \ Bea | E ^ {f (x )} -E ^ {f (y)} | & = e ^ \ Xi | f (x)-f (y) | \ quad \ sex {\ Xi \ mbox {In} f (x), f (y) \ mbox {{}\\\& \ Leq e ^ m | f (x)-f (y) |, \ EEA \ eeex $ the determination theorem of the amplitude property of the Riann product is known.

 

5. ($15 '$) set $ f_n' (x) \ (n =, \ cdots) $ continuous on $ [a, B] $, $ g (x) $ is also continuous on $ [a, B] $, and any $ X_1 in $ [a, B] $, x_2 $ and positive integer $ N $ \ bee \ label {303_5_eq} | f_n (X_1)-f_n (X_2) | \ Leq \ frac {m} {n} | x_1-x_2 | \ quad \ sex {M> 0 }. \ EEE $ proof: $ \ Bex \ vlm {n} \ int_a ^ B g (x) f_n' (x) \ RD x = 0. \ EEx $

 

Proof: \ eqref {303_5_eq} knows $ \ Bex | f_n' (x) | \ Leq \ frac {m} {n }, \ EEx $ and $ \ Bex \ sev {\ int_a ^ B g (x) f_n' (X) \ RD x} \ Leq \ frac {m} {n} \ int_a ^ B | G (x) | \ RD x \ to 0 \ quad \ sex {n \ To \ infty }. \ EEx $

 

6. ($ 15' $) set $ f_n (x) \ (n = 1, 2, \ cdots) $ to be continuous on $ [a, B] $, and $ \ sed {f_n (x) }$ uniformly converges on $ [a, B] $ to $ f (x) $. proof:

(1) $ m> 0 $ exists, so that $ N $ has $ | f_n (x) | \ Leq M $, $ | f (x) | \ Leq M $;

(2) If $ f (x) $ is a continuous function on $ (-\ infty, + \ infty) $, then $ F (f_n (x )) $ uniformly converge to $ F (f (x) $.

 

Proof:

(1) The Limit Function of the Continuous Function Column with consistent convergence knows $ F $ continuity, while the boundary $ M_1> 0 $. and by $ \ Bex \ Max _ {x \ in [a, B]} | f_n (x)-f (x) | \ to 0 \ quad \ sex {n \ To \ infty} \ EEx $ \ Bex \ exists \ n, \ st n \ geq n \ Ra \ Max _ {x \ in [a, B]} | f_n (x)-f (x) | \ Leq 1 \ Ra \ Max _ {x \ in [a, B]} | f_n (x) | \ Leq M_1 + 1. \ EEx $ so, $ \ sed {f_n (x) }$, $ f (x) $ bounded $ \ Bex \ Max _ {x \ in [, b]} | F_1 (x) | + \ cdots + \ Max _ {x \ in [a, B]} | f _ {N-1} (X) | + M_1 + 1 \ equiv M. \ EEx $

(2) The $ F $ continuous knowledge $ F $ is consistent and continuous on $ [-M, m] $, while $ \ Bex \ forall \ ve> 0, \ exists \ Delta> 0, \ st | y_1 | \ Leq M, \ | Y_2 | \ Leq m, \ | y_1-y_2 | <\ Delta \ rA | f (y_1)-f (Y_2) | <\ ve. \ EEx $ and the $ f_n $ uniformly converges to $ F $ Zhi $ \ beex \ Bea \ exists \ n, \ st n \ geq N, \ x \ in [a, B] & \ rA | f_n (x)-f (x) | <\ Delta \ & \ rA | f (f_n (x )) -F (f (x) | <\ ve. \ EEA \ eeex $

 

8. ($ 15' $) set the function $ f (x, y) $ in a neighboring area of $ (x_0, y_0) $ there is a continuous second-order partial derivative, and $ \ Bex F (x_0, y_0) = 0, \ quad f_x '(x_0, y_0) = 0, \ quad f_y' (x_0, y_0)> 0, \ quad F _ {XX} ''(x_0, y_0) <0. \ EEx $ proof: the implicit function identified by the equation $ f (x, y) = 0 $ Y = f (x) $ gets the minimum value at $ x_0 $.

 

Proof: by $ \ Bex f (x, y) = 0, \ quad y = f (x) \ EEx $ $ \ Bex f_x '+ f_y 'F' = 0 \ Ra \ mbox {at} x_0 \ mbox ,} f' =-\ frac {f_x '} {f_y'} = 0; \ EEx $ seek again, with $ \ Bex F _ {XX} ''+ F _ {XY} ''f' + F _ {Yx} ''f' + F _ {YY} ''(F ') ^ 2 + f_y 'f'' = 0 \ Ra \ mbox {at} x_0 \ mbox ,} f'' =-\ frac {f_x ''} {f_y '}> 0. \ EEx $ so $ Y = f (x) $ get the minimum value at $ x_0 $.

 

1. ($ 15' $) set $ A_1, A_2, \ cdots, a_n $ to $ N $ different numbers on the number field $ \ BBP $, solving Linear Equations $ \ Bex \ BA {rrrrrrrrl} X_1 & + & X_2 & + & \ cdots & + & x_n & = & 1 \ a_1x_1 & + & a_2x_2 & + & \ cdots & + & a_nx_n & = & a_n \ A_1 ^ 2x_1 & + & A_2 ^ 2x_2 & + & \ cdots & + & a_n ^ 2x_n & = & a_n ^ 2 \\ \ cdots & \ A_1 ^ {n-1} X_1 & + & A_2 ^ {n-1} x_2 & + & \ cdots & + & a_n ^ {n-1} x_n & = & a_n ^ {n-1} \ EA \ EEx $

 

A: Because of the coefficient matrix's determinant $ \ NEQ 0 $, the original linear equations have only one solution. obviously, $ (0, \ cdots,) ^ t $ is a solution, which is the only solution of the original linear equations.

 

2. ($ 15' $) set $ \ BBP $ to a number field, $ A \ In \ BBP ^ {n \ times N }$, $ M (X) = x ^ 3 + 2x + 1 $ is the smallest polynomial of $ A $. Evaluate $ A ^ {-1} $.

 

Proof: $ \ Bex a ^ 3 + 2a + E = 0 \ rA A (-a ^ 2-2e) = E \ rA a ^ {-1} =-a ^ 2-2e. \ EEx $

 

3. ($ 30' $) set $ \ BBP $ to a number field, $ A = (A _ {IJ}) = (\ al_1, \ cdots, \ al_n) \ In \ BBP ^ {n \ times N }$, $ A _ {NN} $ algebraic remainder formula $ A _ {NN} \ NEQ 0 $.

(1) proof: $ \ al_1, \ cdots, \ Al _ {n-1} $ linear independence;

(2) When $ | A | = 0 $, evaluate the basic solution of the linear equations $ A ^ * x = 0 $, $ A ^ * $ is the adjoint matrix of $ A $.

 

Proof:

(1) the column vector of the matrix specified by $ A _ {NN} \ NEQ 0 $ Zhi $ A _ {NN} $ \ Bex \ sex {\ BA {L} A _ {11 }\\ vdots \ A _ {n-1, 1} \ EA}, \ quad \ cdots, \ quad \ sex {\ BA {L} A _ {1, n-1} \ vdots \ A _ {n-1, n-1} \ EA} \ EEx $ linear independence, while the $ \ al_1, \ cdots, \ Al _ {n-1} $ after adding a component is also linear independence.

(2) by $ | A | = 0 $ Zhi $ \ rank (a) \ Leq n-1 $. if $ \ rank (A) = n-2 $, $ A ^ * = 0 $, which conflicts with $ A _ {NN} \ NEQ 0 $. therefore, $ \ rank (A) = n-1 $, $ \ rank (a ^ *) = 1 $. $ \ Bex a ^ * A = | A | E = 0 \ rA a ^ * (\ al_1, \ cdots, \ Al _ {n-1}) = 0, \ EEx $ we know that $ \ al_1, \ cdots, \ Al _ {n-1} $ is the basic solution of $ A ^ * x = 0 $.

 

4. ($ 30' $) set $ \ BBP $ to a number field, $ \ Bex v =\sed {A \ In \ BBP ^ {n \ times n }; A ^ t = A}, \ quad V_2 = \ sed {B \ In \ BBP ^ {n \ times n}; B \ mbox {upper Triangle Matrix }}. \ EEx $

(1) prove that $ v_1 and V_2 $ are all linear subspaces of $ \ BBP ^ {n \ times n} $;

(2) prove $ \ Bex \ BBP ^ {n \ times n} = v_1 + V_2, \ quad \ BBP ^ {n \ times n} \ NEQ v_1 \ oplus V_2. \ EEx $

 

Proof:

(1) apparently true.

(2) For any $ C \ In \ BBP ^ {n \ times N }$, $ \ beex \ Bea C & =\ sex {\ BA {CCCC} C _ {11} & C _ {12} & \ cdots & C _ {1N} \ c _ {21} & C _ {22} & \ cdots & C _ {2n} \ vdots & \ vdots \ C _ {N1 }& C _ {N2} & \ cdots & C _ {NN} \ EA} \ & = \ sex {\ BA {CCCC} C _ {11} & C _ {21} & \ cdots & C _ {N1} \ C _ {21} & C _ {22} & \ cdots & C _ {N2} \ vdots &\ vdots & \ vdots \ C _ {N1} & C _ {N2} & \ cdots & C _ {NN} \ EA} + \ sex {\ BA {CCCC} 0 & C _ {12}-C _ {21} & \ cdots & C _ {1N}-C _ {N1} \ 0 & 0 & \ cdots & C _ {2n} -C _ {N2 }\\\ vdots & \ vdots \ 0 & 0 & \ cdots & 0 \ EA }\\& \ In v_1 + V_2. \ EEA \ eeex $ but $ \ Bex 0 \ NEQ \ sex {\ BA {CCC} 1 & \\\& \ ddots \\& & 1 \ EA }\ in v_1 \ cap V_2, \ EEx $ and $ \ BBP ^ {n \ times n} \ NEQ v_1 \ oplus V_2. $

 

5. ($30 '$) set $ p (x) $ to an irrevocable polynomial on the number field $ \ BBP $, $ \ Al \ NEQ 0 $ to $ p (x) $.

(1) prove that the constant term $ p (x) $ is not equal to zero;

(2) prove to any positive integer $ M $, $ (p (x), x ^ m) = 1 $;

(3) set $ p (x) = x ^ 3-2x + 2 $, evaluate $ \ DPS {\ frac {1 }{\ Al ^ 5 }}$.

 

Proof:

(1) Use the reverse verification method. if the constant term $ p (x) $ is $0 $, then $ \ Bex p (x) = c_nx ^ N + \ cdots + c_1x = XQ (x ), \ EEx $ you $ \ Bex P (\ Al) = \ Al Q (\ Al) \ rA Q (\ Al) = 0 \ Ra \ deg Q (x) \ geq 1. \ EEx $ therefore, $ p (x) $ is decomposed into the product of polynomials where the number of times is less than $ \ deg p (x) $. this is in conflict with $ p (x) $. therefore, there is a conclusion.

(2) set $ (p (x), x ^ m) = d (x) $, then $ d (x) \ mid p (x) $. by $ p (x) $ unknown $ \ Bex d (x) = 1 \ mbox {or} d (x) = \ frac {1} {C ^ n} p (x ). \ EEx $ if $ \ DPS {d (x) =\frac {1} {C ^ n} p (x) }$, then $ \ beex \ Bea d (x) \ mid x ^ m & \ rA p (x) \ mid x ^ m \ & \ rA x ^ m = R (x) p (x) \ & \ rA 0 \ NEQ \ Al ^ m = Q (\ Al) P (\ Al) = 0. \ EEA \ eeex $ this is a conflict. therefore, $ d (x) = 1 $.

(3) by $ \ Bex x ^ 5 = (x ^ 2 + 2) p (x) + R_1 (x), \ quad R_1 (X) =-2x ^ 2 + 4x-4, \ EEx $ \ Bex p (x) = \ sex {-\ frac {x} {2}-1} R_1 (X) -2 \ EEx $ Zhi $ \ beex \ Bea 2 = \ sex {-\ frac {x} {2}-1} R_1 (x)-P (x) \\&=\ sex {-\ frac {x} {2}-1} \ SEZ {x ^ 5-(x ^ 2 + 2) p (x )} -P (x ). \ EEA \ eeex $ order $ x = \ Al $ \ Bex 2 = \ sex {-\ frac {\ Al} {2}-1} \ Al ^ 5 \ Ra \ frac {1} {\ Al ^ 5} =-\ frac {\ Al + 2} {4 }. \ EEx $

 

6. ($ 20' $) set $ N $ real quadratic form $ F (x_1, \ cdots, X_n) = x ^ tax $ after Orthogonal Linear replacement $ x = QY $ ($ q $ is an orthogonal array) convert to $ \ Bex Y_1 ^ 2 + 2y_2 ^ 2 + \ cdots + ny_n ^ 2. \ EEx $ proof:

(1) The feature value of $ A $ is $1, 2, \ cdots, N $;

(2) orthogonal arrays $ B $ make $ A = B ^ 2 $.

 

Proof:

(1) by $ \ Bex f (x) = x ^ tax = y ^ TQ ^ taqy = \ sum_ I iy_ I ^ 2 \ EEx $ Q \ Bex Q ^ Taq = \ diag (1, 2, \ cdots, n ). \ EEx $ the similarity matrix has the same feature value.

(2) get $ \ Bex B = Q \ diag (1, \ SQRT {2}, \ cdots, \ SQRT {n }) Q ^ t \ EEx $ has a conclusion.

 

7. ($ 20' $) set $ \ SCRA $ to linear transformation of the number field $ \ BBP $ top $ N $ Dimension Linear Space $ V $, $ \ Al \ In V $, $ \ SCRA ^ {n-1} (\ Al) \ NEQ 0 $, $ \ SCRA ^ N (\ Al) = 0 $. proof:

(1) $ \ Al, \ SCRA (\ Al), \ cdots, \ SCRA ^ {n-1} (\ Al) $ is a group of bases of $ V $;

(2) set $ W $ to $ \ SCRA $-invariant subspaces, $ A_1, A_2, \ cdots, a_n \ In \ BBP, \ A_1 \ NEQ 0 $, and the vector $ \ Bex \ Beta = A_1 \ Al + A_2 \ SCRA (\ Al) + \ cdots + a_n \ SCRA ^ {n-1} (\ Al) \ in W, \ EEx $ then $ W = V $.

 

Proof:

(1) set $ \ Bex K_0 \ Al + k_1 \ SCRA (\ Al) + \ cdots + K _ {n-1} \ SCRA ^ {n-1} (\ Al) = 0, \ EEx $ with $ \ SCRA $ Action $ N-2 $ Times found $ K_0 \ SCRA ^ {n-1} (\ Al) = 0 $. since $ \ SCRA ^ {n-1} (\ Al) = 0 $, we have $ K_0 = 0 $. in the preceding formula, $ \ Bex K_1 \ SCRA (\ Al) + \ cdots + K _ {n-1} \ SCRA ^ {n-1} (\ Al) = 0. \ EEx $ use $ \ SCRA $ Action $ N-2 $ same discovery $ k_1 = 0 $. and so on. we get all $ K_ I = 0 $.

(2) from $ W $ is $ \ SCRA $-constant sub-space knowledge $ \ beex \ Bea \ SCRA (\ beta) & = A_1 \ SCRA (\ Al) + A_2 \ SCRA ^ 2 (\ Al) + \ cdots + A _ {n-1} \ SCRA ^ {n-1} (\ Al) \ in W, \\\ SCRA ^ 2 (\ beta) & = A_1 \ SCRA ^ 2 (\ Al) + A_2 \ SCRA ^ 3 (\ Al) + \ cdots + A _ {N-2} \ SCRA ^ {n-1} (\ Al) \ in W, \ cdots & = \ cdots, \ SCRA ^ {N-2} (\ beta) & = A_1 \ SCRA ^ {N-2} (\ Al) + A_2 \ SCRA ^ {n-1} (\ Al) \ in W, \\\ SCRA ^ {n-1} (\ beta) & = A_1 \ SCRA ^ {n-1} (\ Al) \ in W. \ EEA \ eeex $ by $ A_1 \ NEQ 0 $ and the last formula $ \ SCRA ^ {n-1} (\ Al) \ in W $. into the penultimate formula: $ \ SCRA ^ {N-2} (\ Al) \ in W $. and so on. we get $ \ Bex \ Al, \ SCRA (\ Al), \ cdots, \ SCRA ^ {n-1} (\ Al) \ in W. \ EEx $ so $ W = V $.

[Journal of mathematics at home University] 303rd questions about Mathematics Analysis in 2004 of Huazhong Normal University

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.