Problem description:
Given an array s of N integers, are there elements a, B, c in S such that A + B + C = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a, B, c) must be in Non-descending order. (ie, A ≤ B ≤ C)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
Analysis: The question requires that all possible sets be found. Therefore, the thought is to sort the array first, and then use two repeated loops to select two numbers A and B in sequence, then, find whether there is C in the remaining number. The specific implementation uses the upper_bound function to find the first number larger than the current number and remove the repeating loop, then, use the find function to check whether C exists. If C exists, the three numbers are recorded. The Code is as follows:
class Solution {public: vector<vector<int> > threeSum(vector<int> &num) { vector<vector<int> > results; if(num.size()<3) return results; vector<int> subset; sort(num.begin(),num.end()); vector<int>::iterator p=num.begin(),q,flag; while(p<(num.end()-2)) { q=p+1; while(q<num.end()-1) { int tag=0-*p-*q; if(find(q+1,num.end(),tag)!=num.end()) { flag=find(q+1,num.end(),tag); subset.push_back(*p); subset.push_back(*q); subset.push_back(*flag); results.push_back(subset); } subset.clear(); q=upper_bound(q,num.end()-1,*q); } p=upper_bound(p,num.end()-2,*p); } return results; }};