MapReduce implements matrix multiplication-implementation code

Source: Internet
Author: User
Tags map class windows 7 x64

MapReduce implements matrix multiplication-implementation code

Previously I wrote an article on how MapReduce implements the Matrix Multiplication Algorithm: Mapreduce implements the algorithm idea of matrix multiplication.

To give you a more intuitive understanding of program execution, we have compiled the implementation code for your reference.

Programming Environment:

  • Java version "1.7.0 _ 40"
  • Eclipse Kepler
  • Windows 7 x64
  • Ubuntu 12.04 LTS
  • Hadoop2.2.0
  • Vmware 9.0.0 build-812388

Input data:

A matrix storage address: hdfs: // singlehadoop: 8020/wordspace/dataguru/hadoopdev/week09/matrixmultiply/matrixA/matrixa

A matrix content:
3 4 6
4 0 8

B Matrix storage address: hdfs: // singlehadoop: 8020/wordspace/dataguru/hadoopdev/week09/matrixmultiply/matrixB/matrixb

B Matrix content:
2 3
3 0
4 1

Implementation Code:

There are three classes in total:

  • Driver Class MMDriver
  • Map class MMMapper
  • Reduce class MMReducer

You can combine them into a class based on your habits.

MMDriver. java

Package upload Uru. matrixmultiply;


Import org. apache. hadoop. conf. Configuration;
Import org. apache. hadoop. fs. FileSystem;
Import org. apache. hadoop. fs. Path;
Import org. apache. hadoop. io. Text;
Import org. apache. hadoop. mapreduce. Job;
Import org. apache. hadoop. mapreduce. lib. input. FileInputFormat;
Import org. apache. hadoop. mapreduce. lib. output. FileOutputFormat;


Public class MMDriver {
 
Public static void main (String [] args) throws Exception {

// Set configuration
Configuration conf = new Configuration ();


// Create job
Job job = new Job (conf, "MatrixMultiply ");
Job. setJarByClass (dataguru. matrixmultiply. MMDriver. class );

// Specify Mapper & Reducer
Job. setMapperClass (dataguru. matrixmultiply. MMMapper. class );
Job. setReducerClass (dataguru. matrixmultiply. MMReducer. class );

// Specify output types of mapper and CER
Job. setOutputKeyClass (Text. class );
Job. setOutputValueClass (Text. class );
Job. setMapOutputKeyClass (Text. class );
Job. setMapOutputValueClass (Text. class );

// Specify input and output DIRECTORIES
Path inPathA = new Path ("hdfs: // singlehadoop: 8020/wordspace/dataguru/hadoopdev/week09/matrixmultiply/matrixA ");
Path inPathB = new Path ("hdfs: // singlehadoop: 8020/wordspace/dataguru/hadoopdev/week09/matrixmultiply/matrixB ");
Path outPath = new Path ("hdfs: // singlehadoop: 8020/wordspace/dataguru/hadoopdev/week09/matrixmultiply/matrixC ");
FileInputFormat. addInputPath (job, inPathA );
FileInputFormat. addInputPath (job, inPathB );
FileOutputFormat. setOutputPath (job, outPath );


// Delete output directory
Try {
FileSystem hdfs = outPath. getFileSystem (conf );
If (hdfs. exists (outPath ))
Hdfs. delete (outPath );
Hdfs. close ();
} Catch (Exception e ){
E. printStackTrace ();
Return;
}

// Run the job
System. exit (job. waitForCompletion (true )? 0: 1 );
}
}

MMMapper. java

Package upload Uru. matrixmultiply;


Import java. io. IOException;
Import java. util. StringTokenizer;


Import org. apache. hadoop. io. IntWritable;
Import org. apache. hadoop. io. Text;
Import org. apache. hadoop. mapreduce. Mapper;
Import org. apache. hadoop. mapreduce. lib. input. FileSplit;


Public class MMMapper extends Mapper <Object, Text> {
Private String tag; // current matrix
 
Private int crow = 2; // number of rows in matrix
Private int ccol = 2; // Number of columns in matrix B

Private static int arow = 0; // current arow
Private static int brow = 0; // current brow
 
@ Override
Protected void setup (Context context) throws IOException,
InterruptedException {
// TODO get inputpath of input data, set to tag
FileSplit fs = (FileSplit) context. getInputSplit ();
Tag = fs. getPath (). getParent (). getName ();
}


/**
* Input data include two matrix files
*/
Public void map (Object key, Text value, Context context)
Throws IOException, InterruptedException {
StringTokenizer str = new StringTokenizer (value. toString ());

If ("matrixA". equals (tag) {// left matrix, output key: x, y
Int col = 0;
While (str. hasMoreTokens ()){
String item = str. nextToken (); // current x, y = line, col
For (int I = 0; I <ccol; I ++ ){
Text outkey = new Text (arow + "," + I );
Text outvalue = new Text ("a," + col + "," + item );
Context. write (outkey, outvalue );
System. out. println (outkey + "|" + outvalue );
}
Col ++;
}
Arow ++;

} Else if ("matrixB". equals (tag )){
Int col = 0;
While (str. hasMoreTokens ()){
String item = str. nextToken (); // current x, y = line, col
For (int I = 0; I <crow; I ++ ){
Text outkey = new Text (I + "," + col );
Text outvalue = new Text ("B," + brow + "," + item );
Context. write (outkey, outvalue );
System. out. println (outkey + "|" + outvalue );
}
Col ++;
}
Brow ++;

}
}
}

MMReducer. java

Package upload Uru. matrixmultiply;


Import java. io. IOException;
Import java. util. HashMap;
Import java. util. Iterator;
Import java. util. Map;
Import java. util. StringTokenizer;


Import org. apache. hadoop. io. IntWritable;
Import org. apache. hadoop. io. Text;
Import org. apache. hadoop. mapreduce. Cer CER;
Import org. apache. hadoop. mapreduce. Cer. Context;


Public class MMReducer extends Reducer <Text, Text> {


Public void reduce (Text key, Iterable <Text> values, Context context)
Throws IOException, InterruptedException {


Map <String, String> matrixa = new HashMap <String, String> ();
Map <String, String> matrixb = new HashMap <String, String> ();

For (Text val: values) {// values example: B, or
StringTokenizer str = new StringTokenizer (val. toString (),",");
String sourceMatrix = str. nextToken ();
If ("a". equals (sourceMatrix )){
Matrixa. put (str. nextToken (), str. nextToken (); // (0, 4)
}
If ("B". equals (sourceMatrix )){
Matrixb. put (str. nextToken (), str. nextToken (); // (0, 2)
}
}

Int result = 0;
Iterator <String> iter = matrixa. keySet (). iterator ();
While (iter. hasNext ()){
String mapkey = iter. next ();
Result + = Integer. parseInt (matrixa. get (mapkey) * Integer. parseInt (matrixb. get (mapkey ));
}


Context. write (key, new Text (String. valueOf (result )));
}
}

Build a Hadoop environment on Ubuntu 13.04

Cluster configuration for Ubuntu 12.10 + Hadoop 1.2.1

Build a Hadoop environment on Ubuntu (standalone mode + pseudo Distribution Mode)

Configuration of Hadoop environment in Ubuntu

Detailed tutorial on creating a Hadoop environment for standalone Edition

Build a Hadoop environment (using virtual machines to build two Ubuntu systems in a Winodws environment)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.