[Mathematical basics of machine learning] basics of Linear Algebra

Source: Internet
Author: User

Directory

  • Linear Algebra
    • I. Basic Knowledge
    • Ii. vector operations
    • Iii. Matrix Operations
Linear Algebra 1. Basic Knowledge
  1. All vectors in this book are in the form of column vectors:
    \ [\ Mathbf {\ VEC x} = (x_1, x_2, \ cdots, X_n) ^ t = \ begin {bmatrix} X_1 \ X_2 \ vdots \ x_n \ end {bmatrix} \] all the moments in this book \ (\ mathbf x \ In \ mathbb R ^ {M \ times n }\) are:
    \ [\ Mathbf x =\begin {bmatrix} X _ {1, 1} & X _ {1, 2} & \ cdots & X _ {1, n} \ x _ {2, 1} & X _ {2, 2} & \ cdots & X _ {2, N }\\ vdots & \ ddots & \ vdots \ x _ {M, 1} & X _ {m, 2} & \ cdots & X _ {M, n} \ end {bmatrix} \] is abbreviated as \ (X _ {I, j}) _ {M \ times n }\) or \ ([X _ {I, j}] _ {M \ times n }\).
  2. MatrixFNORM: Set moment \ (\ mathbf A = (A _ {I, j}) _ {M \ times n} \), thenFThe norm is \ (| \ mathbf A | _ f = \ SQRT {\ sum _ {I, j} A _ {I, j} ^ {2 }}\).
    It is the extension of vector \ (L_2 \) norms.
  3. Matrix Trace: Set moment \ (\ mathbf A = (A _ {I, j}) _ {M \ times n }\), $ \ mathbf a $ trace is \ (TR (\ mathbf A) = \ sum _ {I} A _ {I, I }\).
    Trace properties:
    • \ (\ Mathbf \)FNorm \ (\ mathbf A \ mathbf a ^ t \) the square root of the trace \ (| \ mathbf A | _ f = \ SQRT {tr (\ mathbf A \ mathbf a ^ {t })}\).
    • \ (\ Mathbf A \) trace \ (\ mathbf a ^ t \) trace \ (TR (\ mathbf A) = tr (\ mathbf a ^ {t }) \).
    • Exchange Law: Assume \ (\ mathbf A \ In \ mathbb R ^ {M \ times n}, \ mathbf B \ In \ mathbb R ^ {n \ times m }\), then \ (TR (\ mathbf A \ mathbf B) = tr (\ mathbf B \ mathbf )\).
    • Combination law \ (TR (\ mathbf A \ mathbf B \ mathbf c) = tr (\ mathbf C \ mathbf A \ mathbf B) = tr (\ mathbf B \ mathbf C \ mathbf )\).
Ii. vector operations
  1. A group of \ (\ mathbf {\ VEC v} _ 1, \ mathbf {\ VEC v} _ 2, \ cdots, \ mathbf {\ VEC v} _ n \) linear Correlation: refers to the existence of a group of incomplete zero solid \ (A_1, A_2, \ cdots, a_n \), make \ (\ sum _ {I = 1} ^ {n} a_ I \ mathbf {\ VEC v} _ I = \ mathbf {\ VEC 0 }\).
    A group of \ (\ mathbf {\ VEC v} _ 1, \ mathbf {\ VEC v} _ 2, \ cdots, \ mathbf {\ VEC v} _ n \) is linearly independent. When and only \ (a_ I = 0, I =, \ cdots, n, \ (\ sum _ {I = 1} ^ {n} a_ I \ mathbf {\ VEC v} _ I = \ mathbf {\ VEC 0 }\).
  2. The maximum number of Linear Independent Vectors contained in a vector space is called the dimension of the vector space.
  3. Point product \ (\ mathbf {\ VEC u} \ cdot \ mathbf {\ VEC v} = U _ xv_x + u_yv_y + u_zv_z = | \ mathbf {\ VEC u} | | \ mathbf {\ VEC v} | \ cos (\ mathbf {\ VEC u }, \ mathbf {\ VEC v })\).

  4. Cross Product of 3D vectors:
    \ [\ Mathbf {\ vec w }=\ mathbf {\ VEC u} \ times \ mathbf {\ VEC v }=\ begin {bmatrix} \ mathbf {\ VEC I }& \ mathbf {\ vec j} & \ mathbf {\ VEC k} \ u_x & u_y & u_z \ v_x & v_y & v_z \ end {bmatrix} \] its \ (\ mathbf {\ VEC I }, \ mathbf {\ vec j}, \ mathbf {\ VEC k} \) unit vectors of the \ (X, Y, Z \) axis respectively.
    \ [\ Mathbf {\ VEC u} = u_x \ mathbf {\ VEC I} + u_y \ mathbf {\ VEC J} + u_z \ mathbf {\ VEC k }, \ quad \ mathbf {\ VEC v} = v_x \ mathbf {\ VEC I} + v_y \ mathbf {\ VEC J} + v_z \ mathbf {\ VEC k} \]?
    • $ \ Mathbf {\ VEC u} $ and \ (\ mathbf {\ VEC v} \) cross products are perpendicular to \ (\ mathbf {\ VEC u }, \ mathbf {\ VEC v.
    • The modulus of the cross product is equal to the area of the parallelogram consisting of \ (\ mathbf {\ VEC u}, \ mathbf {\ VEC v} \).
    • \ (\ Mathbf {\ VEC u} \ times \ mathbf {\ VEC v} =-\ mathbf {\ VEC v} \ times \ mathbf {\ VEC u }\)
    • $ \ Mathbf {\ VEC u} \ times (\ mathbf {\ VEC v} \ times \ mathbf {\ VEC w }) = (\ mathbf {\ VEC u} \ cdot \ mathbf {\ VEC w }) \ mathbf {\ VEC v}-(\ mathbf {\ VEC u} \ cdot \ mathbf {\ VEC v}) \ mathbf {\ VEC w} $
  5. Hybrid product of 3D vectors:
    \ [[\ Mathbf {\ VEC u} \; \ mathbf {\ VEC v }\; \ mathbf {\ VEC w}] = (\ mathbf {\ VEC u} \ times \ mathbf {\ VEC v }) \ cdot \ mathbf {\ vec w }=\ mathbf {\ VEC u} \ cdot (\ mathbf {\ VEC v} \ times \ mathbf {\ VEC w }) \\=\begin {vmatrix} u_x & u_y & u_z \ v_x & v_y & v_z \ w_x & w_y & w_z \ end {vmatrix} =\begin {vmatrix} u_x & v_x & w_x \ u_y & v_y & w_y \ u_z & v_z & w_z \ end {vmatrix} \] its physical meaning is: \ (\ mathbf {\ VEC u}, \ mathbf {\ VEC v}, \ mathbf {\ VEC w} \) is a parallel six-sided edge Body volume. When \ (\ mathbf {\ VEC u}, \ mathbf {\ VEC v}, \ mathbf {\ VEC w} \) constitutes the right hand system, the volume of the parallel cubes is positive.
  6. Returns the union of two vectors: two directions \ (\ mathbf {\ VEC x} = (x_1, x_2, \ cdots, X_n) ^ {t }, \ mathbf {\ VEC y} = (y_1, Y_2, \ cdots, y_m) ^ {t} \), then the vector's parallel vector is recorded:
    \ [\ Mathbf {\ VEC x} \ mathbf {\ VEC y }=\begin {bmatrix} x_1y_1 & x_1y_2 & \ cdots & x_1y_m \ x_2y_1 & x_2y_2 & \ cdots & x_2y_m \ vdots & \ ddots & \ vdots \ x_ny_1 & x_ny_2 & \ cdots & x_ny_m \ end {bmatrix} \] \ (\ mathbf {\ VEC x} \ otimes \ mathbf {\ VEC y }\) or \ (\ mathbf {\ VEC x} \ mathbf {\ VEC y} ^ {t }\).

Iii. Matrix Operations
  1. Given two moments \ (\ mathbf A = (A _ {I, j}) \ In \ mathbb R ^ {M \ times n }, \ mathbf B = (B _ {I, j}) \ In \ mathbb R ^ {M \ times n} \), definition:
    • AdamachaiHadamard product(Also called element-by-element product ):
      \ [\ Mathbf A \ CIRC \ mathbf B =\begin {bmatrix} A _ {1, 1} B _ {1, 1} & A _ {1, 2} B _ {1} & \ cdots & A _ {1, n} B _ {1, n} \ A _ {2, 1} B _ {2, 1} & A _ {2, 2} B _ {2} & \ cdots & A _ {2, n} B _ {2, N }\\\ vdots & \ ddots & \ vdots \ A _ {M, 1} B _ {M, 1} & A _ {m, 2} B _ {m, 2} & \ cdots & A _ {m, n} B _ {M, n} \ end {bmatrix} \]
    • KroninjiKronnecker product:
      \ [\ Mathbf A \ otimes \ mathbf B =\begin {bmatrix} A _ {1, 1} \ mathbf B & A _ {1, 2} \ mathbf B & \ cdots & _{ 1, n} \ mathbf B \ A _ {2, 1} \ mathbf B & A _ {2} \ mathbf B & \ cdots & A _ {2, n} \ mathbf B \ vdots & \ ddots & \ vdots \ A _ {M, 1} \ mathbf B & A _ {M, 2} \ mathbf B & \ cdots & A _ {m, n} \ mathbf B \ end {bmatrix} \]
  2. \ (\ Mathbf {\ VEC x}, \ mathbf {\ VEC a}, \ mathbf {\ VEC B}, \ mathbf {\ VEC c} \) \ (n \) order vector \ (\ mathbf A, \ mathbf B, \ mathbf C, \ mathbf x \) \ (n \) square matrix, then:
    \ [\ Frac {\ partial (\ mathbf {\ VEC a} ^ {t} \ mathbf {\ VEC x })} {\ partial \ mathbf {\ VEC x }=\ frac {\ partial (\ mathbf {\ VEC x }^{ t} \ mathbf {\ VEC })} {\ partial \ mathbf {\ VEC x }=\ mathbf {\ VEC a} \] \ [\ frac {\ partial (\ mathbf {\ VEC a} ^ {t} \ mathbf x \ mathbf {\ VEC B })} {\ partial \ mathbf x }=\ mathbf {\ VEC a} \ mathbf {\ vec B }^{ t }=\ mathbf {\ VEC a} \ otimes \ mathbf {\ VEC B} \ In \ mathbb R ^ {n \ times n} \] \ [\ frac {\ partial (\ mathbf {\ VEC a} ^ {t} \ mathbf x ^ {t} \ mathbf {\ VEC B })} {\ partial \ mathbf x }=\ mathbf {\ VEC B} \ mathbf {\ vec a }^{ t }=\ mathbf {\ VEC B} \ otimes \ mathbf {\ VEC a} \ In \ mathbb R ^ {n \ times n} \] \ [\ frac {\ partial (\ mathbf {\ VEC a} ^ {t} \ mathbf x \ mathbf {\ VEC })} {\ partial \ mathbf x }=\ frac {\ partial (\ mathbf {\ VEC a} ^ {t} \ mathbf x ^ {t} \ mathbf {\ VEC })} {\ partial \ mathbf x }=\ mathbf {\ VEC a} \ otimes \ mathbf {\ VEC a} \] \ [\ frac {\ partial (\ mathbf {\ VEC} ^ {t} \ mathbf x \ mathbf {\ VEC B })} {\ partial \ mathbf x} = \ mathbf X (\ mathbf {\ VEC a} \ otimes \ mathbf {\ VEC B} + \ mathbf {\ VEC B} \ otimes \ mathbf {\ VEC }) \] \ [\ frac {\ partial [(\ mathbf A \ mathbf {\ VEC x} + \ mathbf {\ VEC }) ^ {t} \ mathbf C (\ mathbf B \ mathbf {\ VEC x} + \ mathbf {\ VEC B})]} {\ partial \ mathbf {\ VEC x }=\ mathbf a ^ {t} \ mathbf C (\ mathbf B \ mathbf {\ VEC x} + \ mathbf {\ VEC B }) + \ mathbf B ^ {t} \ mathbf C (\ mathbf A \ mathbf {\ VEC x} + \ mathbf {\ VEC }) \] \ [\ frac {\ partial (\ mathbf {\ VEC x} ^ {t} \ mathbf A \ mathbf {\ VEC x })} {\ partial \ mathbf {\ VEC x }=( \ mathbf A + \ mathbf a ^ {t }) \ mathbf {\ VEC x} \] \ [\ frac {\ partial [(\ mathbf x \ mathbf {\ VEC B} + \ mathbf {\ VEC c }) ^ {t} \ mathbf A (\ mathbf x \ mathbf {\ VEC B} + \ mathbf {\ VEC c})]} {\ partial \ mathbf x} = (\ mathbf A + \ mathbf a ^ {t }) (\ mathbf x \ mathbf {\ VEC B} + \ mathbf {\ VEC c }) \ mathbf {\ VEC B} ^ {t} \] \ [\ frac {\ partial (\ mathbf {\ VEC B} ^ {t} \ mathbf x ^ {t }\ mathbf A \ mathbf x \ mathbf {\ VEC c })} {\ partial \ mathbf x }=\ mathbf a ^ {t} \ mathbf x \ mathbf {\ VEC B} \ mathbf {\ VEC c} ^ {t} + \ mathbf \ mathbf x \ mathbf {\ VEC c} \ mathbf {\ VEC B} ^ {t} \]

  3. For example, if \ (f \) is a mona1 function, then:
    • The element-by-element vector function is \ (f (\ mathbf {\ VEC x}) = (f (X_1), F (X_2), \ cdots, F (x_n )) ^ {t }\).
    • Its Matrix-by-matrix function is:
      \ [F (\ mathbf X) = \ begin {bmatrix} f (x _ {}) & F (X }) & \ cdots & F (X _ {1, n}) \ f (x _ {2, 1}) & F (X _ {2, 2 }) & \ cdots & F (X _ {2, n}) \ vdots & \ ddots & \ vdots \ f (x _ {M, 1 }) & F (X _ {m, 2}) & \ cdots & F (X _ {m, n}) \ end {bmatrix} \]
    • The Yuan-by-yuan derivatives are:
      \ [F ^ {\ Prime} (\ mathbf {\ VEC x}) = (f ^ {\ Prime} (X1), f ^ {\ Prime} (X2 ), \ cdots, f ^ {\ Prime} (x_n) ^ {t} \ f ^ {\ Prime} (\ mathbf X) = \ begin {bmatrix} f ^ {\ Prime} (X _ {}) & f ^ {\ Prime} (X }) & \ cdots & f ^ {\ Prime} (X _ {1, n}) \ f ^ {\ Prime} (X _ {2, 1 }) & f ^ {\ Prime} (X _ {2}) & \ cdots & f ^ {\ Prime} (X _ {2, n }) \ vdots & \ ddots & \ vdots \ f ^ {\ Prime} (X _ {M, 1 }) & f ^ {\ Prime} (X _ {m, 2}) & \ cdots & f ^ {\ Prime} (X _ {m, n }) \ end {bmatrix} \]
  4. Partial Derivatives of various types:
    • The partial derivative of the scalar \ (\ frac {\ partial u} {\ partial v }\).
    • Scalar vector \ (n \) dimension vector) partial Derivative \ (\ frac {\ partial U }{\ partial \ mathbf {\ VEC v }}= (\ frac {\ partial U }{\ partial v_1 }, \ frac {\ partial u} {\ partial V_2}, \ cdots, \ frac {\ partial u} {\ partial v_n}) ^ {t }\).
    • The partial derivative of the scalar pair matrix \ (M \ times n \) Order Matrix:
      \ [\ Frac {\ partial u} {\ partial \ mathbf v }=\ begin {bmatrix} \ frac {\ partial U }{\ partial V _ {1, 1 }}&\ frac {\ partial u} {\ partial V _ {1, 2 }}& \ cdots & \ frac {\ partial u} {\ partial V _ {1, N }}\\ frac {\ partial U }{\ partial V }}&\ cdots & \ frac {\ partial u} {\ partial V _ {2, N }}\\ vdots & \ ddots & \ vdots \\\\ frac {\ partial U }{\ partial V _ {M, 1 }}& \ frac {\ partial U }{\ partial V _ {M, 2 }}& \ cdots & \ frac {\ partial U }{\ partial V _ {M, N }}\ end {bmatrix} \]
    • Vector \ (M \) dimension vector) partial Derivative of scalar \ (\ frac {\ partial \ mathbf {\ vec u }{\ partial v }=( \ frac {\ partial U_1} {\ partial v }, \ frac {\ partial u_2} {\ partial v}, \ cdots, \ frac {\ partial u_m} {\ partial v}) ^ {t }\).
    • Vector \ (M \) dimension vector) partial derivative of vector \ (n \) dimension vector (KNN matrix, row first)
      \ [\ Frac {\ partial \ mathbf {\ vec u }{\ partial \ mathbf {\ VEC v }}=\ begin {bmatrix} \ frac {\ partial U_1 }{ \ partial v_1} & \ frac {\ partial U_1} {\ partial V_2} & \ cdots & \ frac {\ partial U_1} {\ partial v_n} \ frac {\ partial u_2} {\ partial v_1} & \ frac {\ partial u_2} {\ partial V_2} & \ cdots & \ frac {\ partial u_2} {\ partial v_n} \ vdots & \ vdots & \ ddots & \ vdots \ frac {\ partial u_m} {\ partial v_1} & \ frac {\ partial u_m} {\ partial V_2} & \ CDO TS & \ frac {\ partial u_m} {\ partial v_n} \ end {bmatrix} \] if it is column-first, it is the transpose of the above matrix.
    • Matrix \ (M \ times n \) Order Matrix) partial derivative of scalar
      \ [\ Frac {\ partial \ mathbf u} {\ partial v }=\ begin {bmatrix} \ frac {\ partial U _ {} {\ partial v }&\ frac {\ partial U _ {1, 2 }}{\ partial v} & \ cdots & \ frac {\ partial U _ {1, N }}{\ partial v }\\\ frac {\ partial U _ {}}{\ partial v} & \ frac {\ partial U }}{\ partial v} & \ cdots & \ frac {\ partial U _ {2, N }}{\ partial v }\\\ vdots & \ ddots & \ vdots \\\ frac {\ partial U _ {M, 1 }}{\ partial v} & \ frac {\ partial U _ {M, 2 }}{\ partial v} & \ cdots & \ frac {\ partial U _ {M, N }}{\ partial v} \ end {bmatrix} \]
  5. For the trace of a matrix, the following partial derivatives are true:
    \ [\ Frac {\ partial [tr (f (\ mathbf X)]} {\ partial \ mathbf x} = (f ^ {\ Prime} (\ mathbf X )) ^ {t} \] \ [\ frac {\ partial [tr (\ mathbf A \ mathbf x \ mathbf B)]} {\ partial \ mathbf x }=\ mathbf a ^ {t} \ mathbf B ^ {t} \] \ [\ frac {\ partial [tr (\ mathbf A \ mathbf x ^ {t} \ mathbf B)]} {\ partial \ mathbf x }=\ mathbf B \ mathbf A \] \ [\ frac {\ partial [tr (\ mathbf A \ otimes \ mathbf X)]} {\ partial \ mathbf x} = tr (\ mathbf) \ mathbf I \] \ [\ frac {\ partial [tr (\ mathbf A \ mathbf x \ mathbf B \ mathbf X)]} {\ partial \ mathbf x }=\ mathbf a ^ {t} \ mathbf x ^ {t} \ mathbf B ^ {t} + \ mathbf B ^ {t} \ mathbf x \ mathbf a ^ {t} \] \ [\ frac {\ partial [tr (\ mathbf x ^ {t} \ mathbf B \ mathbf x \ mathbf C)]} {\ partial \ mathbf x} = (\ mathbf B ^ {t} + \ mathbf B) \ mathbf x \ mathbf C ^ {t} \] \ [\ frac {\ partial [tr (\ mathbf C ^ {t} \ mathbf x ^ {t }\ mathbf B \ mathbf x \ mathbf C)]} {\ partial \ mathbf x }=\ mathbf B \ mathbf x \ mathbf C ++ \ mathbf B ^ {t} \ mathbf x \ mathbf C ^ {t} \] \ [\ frac {\ partial [tr (\ mathbf A \ mathbf x \ mathbf B \ mathbf x ^ {t} \ mathbf C)]} {\ partial \ mathbf x }=\ mathbf a ^ {t} \ mathbf C ^ {t} \ mathbf x \ mathbf B ^ {t} + \ mathbf C \ mathbf \ mathbf x \ mathbf B \] \ [\ frac {\ partial [tr (\ mathbf A \ mathbf x \ mathbf B + \ mathbf C) (\ mathbf A \ mathbf x \ mathbf B ++ \ mathbf C)]} {\ partial \ mathbf x} = 2 \ mathbf a ^ {t} (\ mathbf A \ mathbf x \ mathbf B + \ mathbf C) \ mathbf B ^ {t} \]
  6. False \ (\ mathbf u = f (\ mathbf X) \) is the matrix value function \ (F: \ mathbb R ^ {M \ times n} \ rightarrow \ mathbb R ^ {M \ times n} \), \ (G (\ mathbf U )\) is the real value function $ G: \ mathbb R ^ {M \ times n} \ rightarrow \ mathbb r $ of \ (\ mathbf U \), the following chain rule is true:
    \ [\ Frac {\ partial g (\ mathbf U) }{\ partial \ mathbf x }=\ left (\ frac {\ partial g (\ mathbf U )} {\ partial X _ {I, j }}\ right) _ {M \ times N }=\ begin {bmatrix} \ frac {\ partial g (\ mathbf U )} {\ partial X _ {1, 1 }}& \ frac {\ partial g (\ mathbf U )} {\ partial X _ {1, 2 }}& \ cdots & \ frac {\ partial g (\ mathbf U) }{\ partial X _ {1, N }}\\ frac {\ partial g (\ mathbf U) }{\ partial X _ {2, 1 }}& \ frac {\ partial g (\ mathbf U )} {\ partial X _ {2 }}& \ cdots & \ frac {\ partial g (\ mathbf U) }{\ partial X _ {2, N }}\\ vdots & \ ddots & \ vdots \\\\ frac {\ partial g (\ mathbf U) }{\ partial X _ {M, 1 }}& \ frac {\ partial g (\ mathbf U) }{\ partial X _ {M, 2 }}& \ cdots & \ frac {\ partial g (\ mathbf U) }{\ partial X _ {M, N }}\\ end {bmatrix }\\=\ left (\ sum _ {k} \ sum _ {L} \ frac {\ partial g (\ mathbf U )} {\ partial U _ {K, L }}\ frac {\ partial U _ {K, L }}{\ partial X _ {I, j }}\ right) _ {M \ times N }=\ left (tr \ left [\ left (\ frac {\ partial g (\ mathbf U) }{\ partial \ mathbf u} \ right) ^ {t} \ frac {\ partial \ mathbf u} {\ partial X _ {I, j }}\ right] \ right) _ {M \ times n} \]

?

This article reposted self-China School Teachers blog, blog address: http://www.huaxiaozhuan.com/

[Mathematical basics of machine learning] basics of Linear Algebra

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.