Server Size:
Single-node deployment, disk 1T, memory 128G
Concurrent Import Size:
1, multithreading concurrent import CSV file
2,csv file 10,000, 100,000, 1 million, 2 million rows of records 4 sizes
3, each CSV corresponds to a collection
Concurrency Query Scale
1, multi-threaded concurrent query different collection
2, divided into full table query and local query two scenarios
Performance Test Results:
Import Performance
CSV file size (million-line record) |
Number of concurrent threads |
Import time-consuming (seconds) |
Cumulative number of imported CSV files |
200 |
1 |
60 |
5000 |
200 |
10 |
105 |
5000 |
200 |
40 |
330 (peak memory 110G) |
5000 |
100 |
1 |
20 |
10000 |
100 |
10 |
32 |
10000 |
100 |
100 |
203 (peak memory 80G) |
10000 |
100 |
200 |
478 (peak memory 120G) |
10000 |
10 |
1 |
4 |
100000 |
10 |
10 |
6 |
100000 |
10 |
100 |
39 |
100000 |
10 |
500 |
370 (peak memory 95G) |
100000 |
1 |
1 |
1 |
1000000 |
1 |
10 |
1 |
1000000 |
1 |
100 |
8 |
1000000 |
1 |
500 |
32 |
1000000 |
Query performance
Collection size (Million records) |
Number of concurrent threads |
Full table Query time-consuming (seconds) |
Part of the query time-consuming-check 100,000 records (seconds) |
200 |
1 |
5.5 |
4 |
200 |
10 |
23 |
6.2 |
200 |
40 |
126 |
13.7 |
100 |
1 |
1.3 |
2.4 |
100 |
10 |
8.9 |
3.7 |
100 |
20 |
11 |
4 |
100 |
40 |
70 |
6.2 |
10 |
1 |
0.6 |
0.5 |
10 |
10 |
0.6 |
0.5 |
10 |
100 |
5 |
1.3 |
10 |
500 |
85 |
5 |
1 |
1 |
0.6 |
/ |
1 |
10 |
0.4 |
/ |
1 |
100 |
0.7 |
/ |
1 |
500 |
2 |
/ |
MongoDB Big Data High concurrency read-write Performance test report