Import and Export data
When importing and exporting Dataframe data, various formats are used, which are divided into
Refer to the IO Tools classification.
If you want to save as ASCII text, you can use To_csv to set parameters such as whether to save the index (line number).
Swap colums Order
If the original data is this:
In [6]: dfout[6]: 0 1 2 3 4 mean0 0.445598 0.173835 0.343415 0.682252 0.582616 0.4455431 0.881592 0.696942 0.702232 0.696724 0.373551 0.6702082 0.662527 0.955193 0.131016 0.609548 0.804694 0.6325963 0.260919 0.783467 0.593433 0.033426 0.512019 0.4366534 0.131842 0.799367 0.182828 0.683330 0.019485 0.3633715 0.498784 0.873495 0.383811 0.699289 0.480447 0.5871656 0.388771 0.395757 0.745237 0.628406 0.784473 0.5885297 0.147986 0.459451 0.310961 0.706435 0.100914 0.3451498 0.394947 0.863494 0.585030 0.565944 0.356561 0.5531959 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593In [7]: cols = Df.columns.tolist () in [8]: colsout[8]: [0L, 1L, 2L, 3L, 4L, ' mean ']
View Code
Change the order by swapping columns
In [a]: cols = cols[-1:] + cols[:-1] in []: colsout[]: ['mean', 0L, 1L, 2 L, 3L, 4L]
In turn, the following effects can be achieved
in [+]: df = df[cols] # in [ 17 17]: mean 0 1 2 3 40 0.445543 0 .445598 0.173835 0.343415 0.682252 0.5826161 0.670208 0.881592 0.696942 0.702232 0.696724 0.3735512 0.632596 0 .662527 0.955193 0.131016 0.609548 0.8046943 0.436653 0.260919 0.783467 0.593433 0.033426 0.5120194 0.363371 0 .131842 0.799367 0.182828 0.683330 0.0194855 0.587165 0.498784 0.873495 0.383811 0.699289 0.4804476 0.588529 0 .388771 0.395757 0.745237 0.628406 0.7844737 0.345149 0.147986 0.459451 0.310961 0.706435 0.1009148 0.553195 0 .394947 0.863494 0.585030 0.565944 0.3565619 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
View Code
(Reference source)
Notes on Pandas