OPENCV feature Detector (Feature Detector), Description sub-extractor (descriptor Extractor) and description sub-match (descriptor Matcher)

Source: Internet
Author: User

1. Feature Detection Sub

-harris

Cv::cornerharris (image,strength,3,3,0.01);

-fast

CV::P tr<cv::fastfeaturedetector> fast = Cv::fastfeaturedetector::create ();
Or
Cv::fast (inputarray image, std::vector<keypoint> &keypoints, int threshold)
Or
Cv::fast (inputarray image, std::vector<keypoint> &keypoints, int threshold, bool nonmaxsuppression, int type)

-sift

CV::P tr<cv::xfeatures2d::sift> SIFT = Cv::xfeatures2d::sift::create ();
Or
<pre name= "code" class= "CPP" >CV::P tr<cv::xfeatures2d::siftfeaturedetector> sift = cv::xfeatures2d:: Siftfeaturedetector::create ();

-surf

CV::P tr<cv::xfeatures2d::surf> SURF = Cv::xfeatures2d::surf::create ();
Or
CV::P tr<cv::xfeatures2d::surffeaturedetector> surf = cv::xfeatures2d::surffeaturedetector::create ();

-orb

CV::P tr<cv::orb> ORB = Cv::orb::create ();

-mser

CV::P tr<cv::mser> mser = Cv::mser::create ();

-gftt

CV::P tr<cv::gfttdetector> GFTT = Cv::gfttdetector::create ();

or directly with goodfeaturestotrack function;

-agast

Cv::agast (inputarray image, std::vector<keypoint> &keypoints, int threshold)//or Cv::agast (Inputarray image, std::vector<keypoint> &keypoints, int threshold, bool nonmaxsuppression, int type)//or CV::P TR<CV:: agastfeaturedetector> agast = Cv::agastfeaturedetector::create ();

-brisk

CV::P tr<cv::brisk> brisk = Cv::brisk::create ();


-simpleblob

CV::P tr<cv::simpleblobdetector> blob = Cv::simpleblobdetector::create ();

-kaze

CV::P tr<cv::kaze> Kaze = Cv::kaze::create ();

-akaze

CV::P tr<cv::akaze> AKAZE = Cv::akaze::create ();

2. Description Sub-Extractor

-SIFT

<span style= "Font-weight:normal;" ><span style= "FONT-SIZE:12PX;" >CV::P tr<cv::xfeatures2d::sift> SIFT = Cv::xfeatures2d::sift::create ();//CV::P tr<cv::xfeatures2d:: Siftdescriptorextractor> sift = cv::xfeatures2d::siftdescriptorextractor::create ();</span></span>

-surf

<span style= "Font-weight:normal;" ><span style= "FONT-SIZE:12PX;" >CV::P tr<cv::xfeatures2d::surf> SURF = Cv::xfeatures2d::surf::create ();//CV::P tr<cv::xfeatures2d:: Surfdescriptorextractor> surf = cv::xfeatures2d::surfdescriptorextractor::create ();</span></span>

-brief

Brief is not used in OpenCV to extract descriptors, as it is used in the orb;

-brisk

<span style= "Font-weight:normal;" ><span style= "FONT-SIZE:12PX;" >CV::P tr<cv::brisk> brisk = cv::brisk::create ();</span></span>

-orb

<span style= "Font-size:12px;font-weight:normal;" >CV::P tr<cv::orb> ORB = cv::orb::create ();</span>
Orb is characterized by fast;

-kaze

<span style= "Font-size:12px;font-weight:normal;" >CV::P tr<cv::kaze> Kaze = cv::kaze::create ();</span>

Note: Kaze descriptors can only use Kaze or Akaze feature points;

-akaze

<span style= "Font-size:12px;font-weight:normal;" >CV::P tr<cv::akaze> AKAZE = cv::akaze::create ();</span>

Similarly, akaze descriptors can only use Kaze or Akaze feature points;

3. Description sub-matching device

   - Bruteforce-bfmatcher

CV::P tr<cv::bfmatcher> bf = cv::bfmatcher::create ("Bruteforce");

where the match type can also be a " BRUTEFORCE-L1 "," Bruteforce-l2 "," bruteforce-hamming ";

   - flannbased- Flannbasedmatcher

CV::P tr<cv::flannbasedmatcher> Flann = cv::flannbasedmatcher::create ("flannbased");



OPENCV feature Detector (Feature Detector), Description sub-extractor (descriptor Extractor) and description sub-match (descriptor Matcher)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.