Opencv-Features2D + homography to find a known object

Source: Internet
Author: User
Tags scalar

Use the function findhomography to find the transform between matched keypoints.

Use the function perspectivetransform to map the points.

/** * @file SURF_Homography * @brief SURF detector + descriptor + FLANN Matcher + FindHomography * @author A. Huaman */#include <stdio.h>#include <iostream>#include "opencv2/core/core.hpp"#include "opencv2/features2d/features2d.hpp"#include "opencv2/highgui/highgui.hpp"#include "opencv2/calib3d/calib3d.hpp"#include "opencv2/nonfree/features2d.hpp"using namespace cv;void readme();/** * @function main * @brief Main function */int main( int argc, char** argv ){  if( argc != 3 )  { readme(); return -1; }  Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );  Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );  if( !img_object.data || !img_scene.data )  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }  //-- Step 1: Detect the keypoints using SURF Detector  int minHessian = 400;  SurfFeatureDetector detector( minHessian );  std::vector<KeyPoint> keypoints_object, keypoints_scene;  detector.detect( img_object, keypoints_object );  detector.detect( img_scene, keypoints_scene );  //-- Step 2: Calculate descriptors (feature vectors)  SurfDescriptorExtractor extractor;  Mat descriptors_object, descriptors_scene;  extractor.compute( img_object, keypoints_object, descriptors_object );  extractor.compute( img_scene, keypoints_scene, descriptors_scene );  //-- Step 3: Matching descriptor vectors using FLANN matcher  FlannBasedMatcher matcher;  std::vector< DMatch > matches;  matcher.match( descriptors_object, descriptors_scene, matches );  double max_dist = 0; double min_dist = 100;  //-- Quick calculation of max and min distances between keypoints  for( int i = 0; i < descriptors_object.rows; i++ )  { double dist = matches[i].distance;    if( dist < min_dist ) min_dist = dist;    if( dist > max_dist ) max_dist = dist;  }  printf("-- Max dist : %f \n", max_dist );  printf("-- Min dist : %f \n", min_dist );  //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )  std::vector< DMatch > good_matches;  for( int i = 0; i < descriptors_object.rows; i++ )  { if( matches[i].distance < 3*min_dist )    { good_matches.push_back( matches[i]); }  }  Mat img_matches;  drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );  //-- Localize the object from img_1 in img_2  std::vector<Point2f> obj;  std::vector<Point2f> scene;  for( int i = 0; i < good_matches.size(); i++ )  {    //-- Get the keypoints from the good matches    obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );    scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );  }  Mat H = findHomography( obj, scene, CV_RANSAC );  //-- Get the corners from the image_1 ( the object to be "detected" )  std::vector<Point2f> obj_corners(4);  obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );  obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );  std::vector<Point2f> scene_corners(4);  perspectiveTransform( obj_corners, scene_corners, H);  //-- Draw lines between the corners (the mapped object in the scene - image_2 )  line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );  line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );  line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );  line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );  //-- Show detected matches  imshow( "Good Matches & Object detection", img_matches );  waitKey(0);  return 0;}/** * @function readme */void readme(){ std::cout << " Usage: ./SURF_Homography  

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.