[Peterdlax reference for functional analysis exercises] Chapter 5th norm linear space

Source: Internet
Author: User

 

 

1. (a) proof (6) defines the norm.

(B) prove that they are equivalent in the (5) shift.

 

Proof: $ \ Bex | (z, u) | '\ Leq | (z, u) | \ Leq 2 | (z, u) | ', \ quad | (z, u) | ''\ Leq | (z, u) | \ Leq \ SQRT {2} | (z, u) | ''. \ EEx $

 

2. proof theorem 2.

 

Proof: For $ Y_1, Y_2 \ In \ bar y $, $ \ Bex \ exists \ Y \ ni Y _ {1N} \ To Y_1, \ quad Y \ ni Y _ {2n} \ To Y_2, \ EEx $ and $ \ Bex Y \ ni Ky _ {1N} + Y _ {2n} \ To ky_1 + Y_2. \ EEx $ ky_1 + Y_2 \ In \ bar y $.

 

3. Proof: If $ x $ is a list space and $ y $ is a closed subspace of $ x $, the commercial space $ x/y $ is complete.

 

Proof: If $ [x_n] $ is the Cauchy column in $ x/y $, then $ \ Bex \ forall \ ve> 0, \ exists \ n, \ m> n \ geq n \ rA | [x_m-x_n] | = | [x_m-x_n] | <\ ve. \ EEx $ defined by the norms of $ [x] $, $ \ Bex \ exists \ q_m, Q_n, \ st q_m-x_m \ In Y, \ q_n-x_n \ In y, \ st | q_m-q_n | <2 \ ve. \ EEx $ complete by $ x $, $ \ Bex \ exists \ Q, \ st Q_n \ to Q \ quad \ sex {n \ To \ infty }. \ EEx $ and $ \ beex \ Bea | [x_n]-[Q] | & = | [Q_n]-[Q] | \ & = | [q_n-q] | \ & \ Leq | q_n-q | \ to 0 \ quad \ sex {n \ To \ infty }. \ EEA \ eeex $

 

4. It is proved that every finite-dimensional sub-space in a norm linear space is closed.

 

Proof: Set $ x $ to a norm linear space. $ Y = \ span \ sed {e_1, \ cdots, e_n} $ is its $ N $ dimension linear space. original Certificate $ \ bee \ label {5_4_equiv} C_1 \ sex {\ sum _ {k = 1} ^ n y_k ^ 2} ^ \ frac {1} {2} \ Leq \ Sen {y} \ Leq C_2 \ sex {\ sum _ {k = 1} ^ n y_k ^ 2} ^ \ frac {1} {2 }. \ EEE $ in fact, $ \ bee \ label {5_4_continu} \ Bea \ Sen {y} & =\ Sen {\ sum _ {k = 1} ^ n y_ke_k} \ & \ Leq \ sum _ {k = 1} ^ n | y_k | \ cdot \ Sen {e_k} \ & \ Leq \ sex {\ sum _ {k = 1} ^ n y_k ^ 2} ^ \ frac {1} {2} \ cdot \ sex {\ sum _ {k = 1} ^ n \ Sen {e_k} ^ 2} ^ \ frac {1 }{ 2 }. \ EEA \ EEE $ in turn, consider $ \ Bex f (y) =\sen {y}, \ quad Y \ in S =\sed {Y \ In Y; \ sum _ {k = 1} ^ n y_k ^ 2 = 1 }. \ EEx $ is known by \ eqref {5_4_continu} $ F $ consecutively in the tightly set $ S $, and can be retrieved to the bottom confirmation $ M $. this $ m> 0 $ (otherwise $ \ exists \ Y \ in S, \ ST \ Sen {y} = 0 $ ). therefore, $ \ Bex f (y) \ geq M, \ quad \ sum _ {k = 1} ^ ny_k ^ 2 = 1, \ EEx $ \ Bex f (y) \ geq m \ sex {\ sum _ {k = 1} ^ n y_k ^ 2} ^ \ frac {1} {2}, \ quad \ forall \ Y \ in Y. \ EEx $ since \ eqref {5_4_equiv}, $ \ sex {Y, \ Sen {\ cdot} $ is the same as $ \ BBR ^ N $, it is also complete, and it is the closed sub-space of $ x $.

 

5. It is proved that the upper definite norm in examples (A), examples (C), examples (d), and examples (e) are not strictly times added.

 

Proof: Taking (a) as an example, take $ \ Bex x = (, \ cdots), \ quad y = (, \ cdots ), \ EEx $ then $ \ Bex \ Sen {x + y} = 2 =\sen {x} + \ Sen {y}, \ EEx $ but $ X, Y $ linear independence.

 

6. It is proved that the norm in example (B) and example (f) is not strictly added when $ p = 1 $.

 

Proof: Taking (B) as an example, take $ \ Bex x = (, \ cdots), \ quad y = (, \ cdots ), \ EEx $ \ Bex \ Sen {x + y} = 2 = \ Sen {x} + \ Sen {y}, \ EEx $ but $ X, Y $ linear independence.

 

7. The $ {\ BF m} $ introduced by (41) is linear.

 

Proof: $ \ bee \ label {5_7_linear} \ Bea 2Z '= x' + y' \ rA 2 {\ BF m} \ cfrac {x + y} {2 }= {\ BF m} X + {\ BF m} y. \ EEA \ EEE $ get $ y = 0 $ \ bee \ label {5_7_two} 2 {\ BF m} \ cfrac {x} {2} = {\ BF m} X. \ EEE $ prove by mathematical induction $ \ Bex {\ BF m} (kx) = K {\ BF m} X, \ Quad (k = 1, 2, \ cdots ). \ EEx $ actually, $ \ beex \ Bea {\ BF m} (kx) & ={\ BF m} (x + (k-1) X) \ & =\ cfrac {1} {2} {\ BF m} (2x) + \ cfrac {1} {2} {\ BF m} (2 (k-1) x) \ quad \ sex {\ eqref {5_7_linear }\\\&={\ BF m} X + {\ BF m} (k-1) X) \ quad \ sex {\ eqref {5_7_two }\\\& ={\ BF m} X + (k-1) {\ BF m} X \ quad \ sex {\ mbox {inductive hypothesis }\\\& = K {\ BF m} X. \ EEA \ eeex $ get $ y =-x $ in \ eqref {5_7_linear}, then $ \ Bex {\ BF m} (-x) =-{\ BF m} X, \ EEx $, and $ \ beex \ Bea {\ BF m} (kx) & ={ \ BF m} (-k) (-x) \\& = (-k) {\ BF m} (-x) \ & = (-k) (-{\ BF m} X) \ & = K {\ BF m} X \ quad \ sex {k =-1, -2, \ cdots }. \ EEA \ eeex $ and then by $ \ Bex {\ BF m} X ={\ BF m} \ sex {M \ cdot \ cfrac {1} {m} x} = m \ cdot {\ BF m} \ sex {\ cfrac {1} {m} x} \ EEx $ $ \ Bex {\ BF m} \ sex {\ cfrac {1} {m} X }=\ cfrac {1} {m} {\ BF m} X, \ quad m \ In \ bbz \ BS \ sed {0 }; \ EEx $ \ Bex {\ BF m} \ sex {\ cfrac {k} {m} x} = K {\ BF m} \ sex {\ cfrac {1} {m} X }=\ cfrac {k} {m} {\ BF m} X, \ quad k \ In \ bbz, \ m \ In \ bbz \ BS \ sed {0 }. \ EEx $ by $ {\ BF m} $ is an equidistance between $ {\ BF m} $ consecutive, with $ \ Bex {\ BF m} (\ Al x) = \ Al \ cdot {\ BF m} X, \ quad \ forall \ Al. \ EEx $ finally, by \ eqref {5_7_linear} And \ eqref {5_7_two}, $ \ Bex {\ BF m} (x + y) =\ cfrac {1} {2} {\ BF m} (2x) + \ cfrac {1} {2} {\ BF m} (2y) = {\ BF m} X + {\ BF m} y. \ EEx $

 

8. Prove that $ x $ is complete.

 

Proof: only proof that $ x $ is closed. set $ \ Bex x \ Ni x ^ k \ to X, \ EEx $ \ Bex \ max_n | a ^ k_n-a_n | \ to 0 \ quad \ sex {k \ To \ infty }. \ EEx $ and $ \ Bex \ forall \ ve> 0, \ exists \ K, \ ST \ sup_n | a ^ k_n-a_n | <\ cfrac {\ ve} {2 }. \ EEx $ for this $ K $, known by $ \ DPS {\ vlm {n} a ^ k_n = 0} $ \ Bex \ exists \ n, \ n \ geq n \ rA | a_n ^ k | <\ cfrac {\ ve} {2 }. \ EEx $ hence $ \ Bex n \ geq n \ rA | a_n | \ Leq | a_n-a ^ K_n | + | a ^ K_n | <\ ve. \ EEx $ this indicates $ \ DPS {\ vlm {n} a_n = 0 }$, and $ x \ In x $.

 

 

Error message:

 

Page 33, (23) should be $ MP <N $. Page 34-35, and all the simhei letters should be changed to their corresponding regular letters (This Regulation applies when this book is introduced later ).

 

Page 35 and Exercise 6 should be removed from the confirmation page.

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.