Pku1730 (integer decomposition Prime Number + GCD, power POW)

Source: Internet
Author: User

Http://acm.pku.edu.cn/JudgeOnline/problem? Id = 1730

 

Question:

For a number N, obtain the maximum Q so that n = a ^ Q, where a, Q, and n are all 32-bit integers. (Multiple groups of data)

Analysis: As long as N is decomposed, gcd of all prime factor numbers can be obtained. Note: N may be a negative number. Therefore, you need to divide the obtained result into 2 for a negative number until the result is not an even number.

The following code breaks down an integer N into a prime power in the form of N = p1 ^ T1 *... * PK ^ TK;

# Include <iostream> <br/> using namespace STD; <br/> int res [1000] [2]; <br/>__ int64 N; <br/> bool s [100010]; <br/> int prime [10000]; <br/> int gcd (int A, int B) <br/>{< br/> If (B = 0) <br/> return a; <br/> return gcd (B, A % B ); <br/>}< br/> void prime () // evaluate the prime number <br/> {<br/> int I, J, K, T; <br/> for (I = 2; I <= 100000; I + = 2) {s [I] = 0; s [I-1] = 1 ;} <br/> S [1] = 0; s [2] = 1; <br/> for (I = 3; I <= 500; I + = 2) <br/> {<br/> If (s [I]) <br/ >{< Br/> K = 2 * I; t = I + k; <br/> while (T <= 100000) {s [T] = 0; T = T + k ;}< br/>}< br/> K = 1; prime [1] = 2; <br/> for (I = 3; I <= 100000; I + = 2) <br/> {<br/> If (s [I] = 1) {k ++; prime [k] = I ;}< br/>}< br/> prime [0] = K; <br/>}< br/>/* int fun () // integer decomposition n = p1 ^ T1 *... * PK ^ TK <br/> {// you do not know where the error is ~~ Wa several times, <br/> int maxn =-1, I; <br/> int sum = 0; <br/> for (I = 1; I <= prime [0]; I ++) <br/>{< br/> If (N % prime [I] = 0) <br/>{< br/> sum ++; <br/> res [Sum] [1] = prime [I]; <br/> res [Sum] [0] = 0; <br/> while (N % prime [I] = 0) <br/>{< br/> res [Sum] [0] ++; <br/> N/= prime [I]; <br/>}< br/> return sum; <br/>}< br/> */<br/> int fun () // integer decomposition n = p1 ^ T1 *... * PK ^ TK <br/>{< br/> int I, S, K = 0; <br/> for (I = 1; I <= prime [0]; I ++) <br/>{< br/> S = 0; <br/> while (N % prime [I] = 0) <br/>{< br/> S ++; <br/> N/= prime [I]; <br/>}< br/> If (S> 0) <br/>{< br/> K ++; <br/> res [k] [1] = prime [I]; // memory factor <br/> res [k] [0] = s; // storage power <br/>}< br/> If (n = 1) break; <br/> If (N/prime [I] <prime [I]) <br/>{< br/> K ++; <br/> res [k] [1] = N; <br/> res [k] [0] = 1; <br/> n = 1; <br/> break; <br/>}< br/> re S [0] [1] = res [0] [0] = K; <br/> return K; <br/>}< br/> int main () <br/>{< br/> int I, ANS, sum, flag; <br/> prime (); <br/> while (scanf ("% i64d ", & N) <br/>{< br/> flag = 0; <br/> If (n <0) // negative ~~~ <Br/>{< br/> N =-N; <br/> flag = 1; <br/>}< br/> sum = fun (); <br/> ans = res [1] [0]; <br/> for (I = 2; I <= sum; I ++) <br/> ans = gcd (ANS, res [I] [0]); <br/> If (flag & Ans % 2 = 0) // n is a negative number, which can be processed in multiple steps. <br/>{< br/> while (ANS % 2 = 0) <br/> ANS/= 2; <br/> printf ("% d/N", ANS); <br/>}< br/> else <br/> printf ("% d/N ", ans); <br/>}< br/> return 0; <br/>}< br/> 

The following code is written using the POW () function. However, you must pay attention to the precision when using this function. After reading discuss, you will know that the accuracy must be set to 1e-12 before you can use the AC ~~

# Include <iostream> <br/> # include <cmath> <br/> using namespace STD; <br/> # define maxn 1000 <br/> # define IP 1e-12 // accuracy problems ~ <Br/>__ int64 N; <br/> double TEP1, tep2; <br/> void fun () <br/>{< br/> int I, start = 32, flag = 1; // case of integer flag = 1; <br/> If (n <0) <br/>{< br/> Start = 31; <br/> flag = 2; // flag = 2 for negative numbers; <br/> N =-N; <br/>}< br/> Double P; <br/> for (I = start; I> = 1; I-= Flag) <br/> {<br/> P = POW (N * 1.0, 1.0/I); <br/> TEP1 = floor (p); // round down <br/> tep2 = Ceil (P ); // rounded up <br/> // cout <ABS (p-tep1) <Endl; 0abs (x): X is an integer; <br/> // cout <FABS (p-tep1) <Endl; 0 .~~ FABS (x): X is a floating point number; returns the absolute value; <br/> If (FABS (p-TEP1) <IP | FABS (tep2-p) <= IP) <br/>{</P> <p> printf ("% d/N", I); <br/> break; <br/>}< br/> int main () <br/>{< br/> while (scanf ("% i64d", & N) <br/>{< br/> fun (); <br/>}< br/> return 0; <br/>} 

 

 

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.