Probability theory and Mathematical statistics illustration

Source: Internet
Author: User

\documentclass[utf8,a1paper,landscape]{ctexart}%utf8,ctexart Chinese support, Landscape landscape layout \usepackage[svgnames]{xcolor}\usepackage{tikz}%Drawing \usetikzlibrary{arrows,shapes,positioning}\tikzstyle Arrowstyle=[scale=1]\usepackage{geometry}%Margin settings \geometry{top=0.5cm,bottom=0.5cm,left=0.5cm,right=0. 5CM}\USEPACKAGE{FANCYHDR}%page Footer page set \pagestyle{fancy}\begin{document} \title{\textbf{learning plot of probability and Mathematical Statistics}}%title \author{dencchaohai}%author \maketitle \newpage%restart a page \part{probability theory} \section{logical relationship plot} \begin{center}%graphics Centered \begin{tikzpicture} [ level1/.style={sibling Distance=1cm},level2/.style={sibling Distance=3cm},level3/.style={sibling Distance=5cm},level4/.style={sibling distance=7cm}]%set the length of the Tree \tikzstyle{every node}=[scale=1]%text zoom 0.6 times times%define \node (number) at (position) [Property]{content}%sort, first left and right, first up and down \node (XX) at (0,0) [draw,align=Center]                {phenomenon}; \node (qdxxx) at (Ten,Ten) [draw,align=Center]        {Deterministic phenomenon}; \node (sjxxx) at (Ten,-Ten) [draw,align=Center]        {Random phenomenon}; \node (GC) at (Ten+5,-Ten+1) {observe}; \node (SY) at ( -,-Ten) [draw,align=Center]                Test [Grow=Up ] child{node{feature} child{node{3. Randomness}} child{node{2. can be observed}} child{node{1. Repeatable}}        }; \node (JG) at ( -+5,-Ten+1{The result of a particular characteristic observable in the experiment}; \node (YBD) at ( -,-Ten) [draw,align=Center]        {Sample Point \\$\omega$}; \node (DY) at ( -+1,-Ten-5) {single}; \node (JBSJ) at ( -,- -) [draw,align=Center]        {Basic event}; \node (HS) at ( +,- --5) {function $x=X (\omega) $}; \node (SJBL) at ( -,- -) [draw,align=Center]        {random variable \ \ $X $} [Grow=Left ] Child{node at (-5,0) {probability distribution $p_i=p\{x=x_i\}$, probability density $f (X) =f'(x) $}Child{node at (-7,0) {distribution function $f (x) =P\{x\leq x\}$}}; \node (BLZ) at ( +,- in) {variable value $x_i,x$}; \node (BLZ) at ( -,- in) {density $p_i,f (x) $}; \node (SJXL) at ( -,- +) [draw,align=center]{random vector \\$\vec{x}=\{x_1,x_2,\dots\}$} [Grow=Left ] Child{node at (-5,0) {Joint density $p_{ij},f (x, y) $ (Edge density $p_i^x,p_j^y,f_x (X), F_y (Y) $)} child{nodeat (-9,0{Federated Distribution $f (x, y) $ (Edge distribution $f_x (×), F_y (y) $)}}}; \node (QT) at ( -+5,-Ten+1) {all}; \node (FH) at ( -+5,- -+1) {composite}; \node (XC) at ( -+5,- -+1) {multiply $x_ip_i,xf (x) $} [Grow=Up ] child{node{First Order original point moment| expect $ex=\sum xp_i,\intXF (x) dx$} child{node{second-order center moment| Variance $dx=e (X-EX) ^2$}}}; \node (QH) at (35.5,- -) {sum}; \node (BLHS) at (36.8,-26.8) {variable function $y=g (Y) $}; \node (YBKJ) at ( +,-Ten) [draw,align=Center]            {Sample Space \\$\omega$} [Grow=Right ] Child{node at (1,0) {$\omega=\left\lbrace \omega|P (\omega) \right\rbrace $} child{node{Sample Point Infinity $\omega=(A, b) $}} child{node{Sample points Limited $\omega=\{\omega_1,\omega_2,\dots,\omega_n\}$}}}; \node (ZJ) at ( ++1,-Ten-5) {subset} [grow=Right ] Child{node at (1,0) {Complete (inevitable event) $\omega$}} Child{node at (2,0{subset (random event) $A, B,\dots $}} Child{node at (1,0{Empty set (Impossible event) $\emptyset$}}; \node (SJ) at ( +,- -) [draw,align=Center]        {event \ \ $A, b,\dots$}; \node (CD) at ( ++1,- --5) {measure} [Grow=Right ] Child{node at (1,0) {$P (\omega) =1$}} Child{node at (1,0){$0\leq P (A) \leq1$}} Child{node at (1,0) {can be added}}; \node (GL) at ( +,- -) [draw,align=Center]        {probability \ $P (A) $} [Grow=Down ] Child{node at (-2,-2{Basic Approximate} child{node{Classical Overview (limited, etc.)}} Child{node at (2,-1{geometric approximate (infinite) }}} Child{node at (7,-2) {conditional probability $p (b| A) =\frac{p (AB)}{p (a)}$| multiplication formula $p (AB) =p (a) P (b| A) $| Independence $p (AB) =p (A) p (B) $} [Grow=Down ] Child{node at (3,-3) {Bayesian $p (a_i| b) =\frac{p (A_IB)}{p (b)}=\frac{p (a_i) P (b| a_i)}{\sum P (a_j) p (b|A_j)} $}} Child{node at (4,-1) {full probability $p (B) =\sum P (a_i) p (b|a_i) $}}; \node (LJ) at ( $,- in) {cumulative, discrete segment ladder, continuous integral area}; \node (DJ) at ( ++5,- -+1) {equivalent}; \node (JH) at ( -,- -) [draw,align=Center]        Collection [Grow=Right ] child{node{operation Law} Child{node at (0+3,0) {Dual law $\overline{a\cup b}=\overline{a}\cap \overline{b},\overline{a\cap b}=\overline{a}\cup \overline{b}$} child{node{Distribution Law $a\cap (B\cup C)= (A\cap B) \cup (A\cap c), A\cup (b\cap c) =(A\cup B) \cap (A\cup C) $} child{node{Exchange Law $ A+b=b+a$}} Child{node at (3,-5) {Binding Law $a+ (b+c) = (a+b) +C $}} } Child{node at (3,-4) {reflexive Law $\overline{\overline{a}}=a$}}}; \node (FBHS) at ( -,- -) [draw,align=center]{distribution function \ \ $F (x) =P\{x\leq x\}$}; % Connection \draw[Arrows] (starting point)--(end) \draw[->] (XX)--(QDXXX); \draw[->] (XX)--(SJXXX); \draw[->] (sjxxx)--(SY); \draw[->] (YBD)--(JBSJ); \draw[->] (SY)--(YBD); \draw[->] (YBD)--(YBKJ); \draw[->] (JBSJ)--(SJBL); \draw[->] (ybkj)--(SJ); \draw[->] (SJ)--(GL); \draw[->] (JBSJ)--(SJ); \draw[->] (SJBL)--(XC); \draw[->] (GL)--(XC); \draw[->] (SJ)--(JH); \draw[->] (GL)--(FBHS); \draw[->] (SJBL)--(SJXL); \draw[->] (SJBL)--(GL); \end{tikzpicture} \end{center} \newpage \part{Mathematical Statistics} \section{logical relationship plot} \begin{center} \BEGIN{TIKZP Icture} \node (GT) at (0,0) [fill=Green,circle]        {individual}; \node (ZT) at (Ten,Ten) [fill=Green,circle]        {Total $x$}; \node (YB) at (Ten,-Ten) [fill=Green,circle]        {Sample $ (x_1,x_2,\dots) $}; \node (ZTFBHS) at ( -,Ten) [fill=Green,circle]        {Total distribution function $f (x) $}; \node (YBFBHS) at ( -,-Ten) [fill=Green,circle]        {Sample distribution function $f (x_1,x_2,\dots) $}; \node at ( A,0) {} [Grow=Right ] Child{node at (2,0{The sample infers the overall type (which the type is generally derived from experience)}} Child{node at (2,0{The sample infers the overall parameters (mainly inferred parameters)} [Grow=Up ] Child{node at (1,2{Statistics (functions without overall unknown parameters)} child{node{Variance}} child{node{mean}}} Child{node at (8,0{The pivot volume (a function with a known overall type but with only one overall unknown parameter)}}}; \draw[->] (GT)--(ZT); \draw[->] (GT)--(YB); \draw[-] (YB) to Node (TJTD) [right]{Statistical Inference} (ZT); \draw[->] (ZT)--(ZTFBHS); \draw[->] (YB)--(YBFBHS); \end{tikzpicture} \end{center}\end{document}

Probability theory and Mathematical statistics illustration

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.