Python + matplotlib implement the example code of the Box Bar Chart, pythonmatplotlib

Source: Internet
Author: User

Python + matplotlib implement the example code of the Box Bar Chart, pythonmatplotlib

Demo result:

Complete code:

import matplotlib.pyplot as pltimport numpy as npfrom matplotlib.image import BboxImagefrom matplotlib._png import read_pngimport matplotlib.colorsfrom matplotlib.cbook import get_sample_dataclass RibbonBox(object):  original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",                       asfileobj=False))  cut_location = 70  b_and_h = original_image[:, :, 2]  color = original_image[:, :, 2] - original_image[:, :, 0]  alpha = original_image[:, :, 3]  nx = original_image.shape[1]  def __init__(self, color):    rgb = matplotlib.colors.to_rgba(color)[:3]    im = np.empty(self.original_image.shape,           self.original_image.dtype)    im[:, :, :3] = self.b_and_h[:, :, np.newaxis]    im[:, :, :3] -= self.color[:, :, np.newaxis]*(1. - np.array(rgb))    im[:, :, 3] = self.alpha    self.im = im  def get_stretched_image(self, stretch_factor):    stretch_factor = max(stretch_factor, 1)    ny, nx, nch = self.im.shape    ny2 = int(ny*stretch_factor)    stretched_image = np.empty((ny2, nx, nch),                  self.im.dtype)    cut = self.im[self.cut_location, :, :]    stretched_image[:, :, :] = cut    stretched_image[:self.cut_location, :, :] = \      self.im[:self.cut_location, :, :]    stretched_image[-(ny - self.cut_location):, :, :] = \      self.im[-(ny - self.cut_location):, :, :]    self._cached_im = stretched_image    return stretched_imageclass RibbonBoxImage(BboxImage):  zorder = 1  def __init__(self, bbox, color,         cmap=None,         norm=None,         interpolation=None,         origin=None,         filternorm=1,         filterrad=4.0,         resample=False,         **kwargs         ):    BboxImage.__init__(self, bbox,              cmap=cmap,              norm=norm,              interpolation=interpolation,              origin=origin,              filternorm=filternorm,              filterrad=filterrad,              resample=resample,              **kwargs              )    self._ribbonbox = RibbonBox(color)    self._cached_ny = None  def draw(self, renderer, *args, **kwargs):    bbox = self.get_window_extent(renderer)    stretch_factor = bbox.height / bbox.width    ny = int(stretch_factor*self._ribbonbox.nx)    if self._cached_ny != ny:      arr = self._ribbonbox.get_stretched_image(stretch_factor)      self.set_array(arr)      self._cached_ny = ny    BboxImage.draw(self, renderer, *args, **kwargs)if 1:  from matplotlib.transforms import Bbox, TransformedBbox  from matplotlib.ticker import ScalarFormatter  # Fixing random state for reproducibility  np.random.seed(19680801)  fig, ax = plt.subplots()  years = np.arange(2004, 2009)  box_colors = [(0.8, 0.2, 0.2),         (0.2, 0.8, 0.2),         (0.2, 0.2, 0.8),         (0.7, 0.5, 0.8),         (0.3, 0.8, 0.7),         ]  heights = np.random.random(years.shape) * 7000 + 3000  fmt = ScalarFormatter(useOffset=False)  ax.xaxis.set_major_formatter(fmt)  for year, h, bc in zip(years, heights, box_colors):    bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h)    bbox = TransformedBbox(bbox0, ax.transData)    rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")    ax.add_artist(rb_patch)    ax.annotate(r"%d" % (int(h/100.)*100),          (year, h), va="bottom", ha="center")  patch_gradient = BboxImage(ax.bbox,                interpolation="bicubic",                zorder=0.1,                )  gradient = np.zeros((2, 2, 4), dtype=float)  gradient[:, :, :3] = [1, 1, 0.]  gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel  patch_gradient.set_array(gradient)  ax.add_artist(patch_gradient)  ax.set_xlim(years[0] - 0.5, years[-1] + 0.5)  ax.set_ylim(0, 10000)  fig.savefig('ribbon_box.png')  plt.show()

Summary

The above is all the content of the python + matplotlib implementation Box Bar Chart instance code, I hope to help you. If you are interested, you can continue to refer to other related topics on this site. If you have any shortcomings, please leave a message. Thank you for your support!

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.