Python data analysis-blue-red ball in two-color ball analysis statistical example, python Data Analysis
This article describes the two-color ball blue-red ball analysis statistics of Python data analysis. We will share this with you for your reference. The details are as follows:
Next, let's take a look at the previous Python data analysis to get the data processing for the collection of two-color ball history information,
Newdata.txt Data Format
...
, 15
, 04
, 05
...
I. Blue ball statistics:
Analyze_data_lan.py
#! /Usr/bin/python #-*-coding: UTF-8-*-# Call pandas numpy matplotlib package import pandas as pdimport numpy as npimport matplotlib. pyplot as plt(read newdata.txt file df = pd.read_table('newdata.txt ', header = None, sep = ',') # print df [] # 2nd to 3rd rows (index 0 starts with the first row, 1 indicates the second row, excluding the fourth row) # print df. loc [,:] # All columns from 1st rows to 9th rows # print df. loc [:, [1st] # tdate = sorted (df. loc [:, 0]) # retrieve the first column of data # print tdatetdate1 = [] # Read tdate data to the list for I in tdate: tdate1.append (I) print tdate1 # s = pd. series (tdate1, index = tdate1) s = pd. series (range (1, len (tdate1) + 1), index = tdate1) # convert a date to a corresponding value starting from 1 # print stblue = list (reversed (df. loc [:, 7]) # reverse print tbluefenzu = pd for the data. value_counts (tblue, ascending = False) # group the data for statistics and sort print fenzux = list (fenzu. index [:]) # obtain the blue number y = list (fenzu. values [:]) # obtain the blue statistical quantity print xprint y # print type (fenzu) plt. figure (figsize = (10, 6), dpi = 70) # configure the drawing size and fineness plt. legend (loc = 'best') # plt. plot (fenzu, color = 'red') # plot plt. bar (x, y, alpha =. 5, color = 'B', width = 0.8) # Set plt in the histogram parameter. title ('The blue ball number') # title plt. xlabel ('Blue number') # X axis content plt. ylabel ('times ') # The content of the Y axis plt. show () # display chart
Result output:
It seems that the blue ball 9 is selected at most
Ii. Red Ball statistics
Analyze_data_hong.py
#! /Usr/bin/python #-*-coding: UTF-8-*-import pandas as pdimport numpy as npimport matplotlib. pyplot as plt # Read the file df = pd.read_table('newdata.txt ', header = None, sep =', ') # print df [] # print df. loc [0: 10,:] # print df. loc [:, 1:6] tdate = sorted (df. loc [:, 0]) # print tdateh1 = df. loc [:, 1] h2 = df. loc [:, 2] h3 = df. loc [:, 3] h4 = df. loc [:, 4] h5 = df. loc [:, 5] h6 = df. loc [:, 6] # Merge data together all = h1.append (h2 ). append (h3 ). append (h4 ). append (h5 ). append (h6) alldata = list (all) print len (alldata) fenzu = pd. value_counts (all, ascending = False) print fenzux = list (fenzu. index [:]) y = list (fenzu. values [:]) print xprint y # print type (fenzu) plt. figure (figsize = (10, 6), dpi = 70) plt. legend (loc = 'best',) # plt. plot (fenzu, color = 'red') plt. bar (x, y, alpha =. 5, color = 'R', width = 0.8) plt. title ('the red ball number') plt. xlabel ('red number') plt. ylabel ('times ') plt. show ()
Result output:
Red Balls 1, 7, 14, 17, and 26 are more likely to be selected.