#!/usr/bin/python#-*-coding:utf-8-*- fromCollectionsImportdeque fromMathImportlog10defpermute (SEQ, index): Seqc=seq[:] seqn=[Seqc.pop ()] Divider= 2 whileSeqc:index, New_index=divmod (Index,divider) Seqn.insert (New_index, Seqc.pop ()) Divider+ = 1returnseqndefz62 ():#0~7 Eight numbers are placed on eight vertices of the cube, and the sum of the four numbers of each polygon is equalA=[0, 1, 2, 3, 4, 5, 6, 7] n=sum (a)ifN%2==1: return Else: N/=2 forIinchRange (0,40320): v1=permute (a,i)if(V1[0] + v1[1] + v1[2] + v1[3] = = N andV1[0]+ v1[1] + v1[4] + v1[5]== n andV1[0]+ v1[2] + v1[4] + v1[6] = = N andV1[0]+ v1[4] + v1[4]+ v1[7] = = N andV1[0]+ v1[1] > N/2 andV1[5] > V1[7]): Printv1returndefz58 ():#Construction Latin side: the Latin side refers to the n*n phalanx where each row of 1 to N of these numbers, only one occurrenceSs=6D= Deque (Range (1,ss+1)) forIinchRange (ss): D.rotate (1) PrintList (d)returndefz59 ():" "answers such as 1 2 3 4 5 6 Each column right is greater than the left of each row is greater than the fill in 1~6 6 digits" "T=range (2,6) forIinchT: forJinchT: forMincht:n=14-i-j-mifI!=j!=m!=i andJ>i andN>m andN>I:Print[1, I,j]Print[m,n,6] returndefISS (N): s="'. Join (Map (str,n)) T=set (s) M=Len (s)returnLen (t) ==m and '0' not inchTdefz60 ():" "If 192,384,576 384 is the second number is 192 of twice times 576 number the second is 192 times the number is 1~9" " forIinchRange (111,333): T=[i,2*i,3*i]ifISS (t):PrintTdefz61 ():#such as 361,529,784, their three number is completely squared, such as 361=19*19 at the same time the number is 1~9Ge=[x*x forXinchRange (11,31)] forIinchGE: forJinchGE: forMinchGe:t=[I,j,m]ifI<j<m andISS (t):PrintTdefzz68 (n):ifn==2:returnFilterLambdaX:x%2==0,range (11,99)) T=[] P=zz68 (n-1) forJinchP: forIinchRange (10): nn=j*10+IifISS ([NN]) andnn%n==0:t.append (NN)returnTdefz66 ():" "In addition to restore-x7x ~ xx/--------~/xxxxx ~ x77 ~------~ x7x ~ x7x ~----~ XX ~ XX ~---~ 0" " forIinchRange (1,10): forJinchRange (11,100): M2= i *J M3= 7 *Jif((m2% 100 = = 77 andM2 >100) and(M3/10% 10 = = 7 andM3 > 100)): forKinchRange (1,10): ifk*j<100: Print[i*100+70+K,j]returndefz67 ():" "In addition to restore 2 ~ x7xxx ~ xxx/-----------~/xxxxxxxx ~ xxxx ~------~ xxx ~ XXX ~-------~ xxxx ~ XXX ~---------~ XXXX ~ xxxx ~---------~ 0" "g=LambdaX,y:map (LambdaA,b=x:int (log10 (a*b)) +1,y) ==[4,3,3,4] t=[8,9] forIinchRange (100,142): forJinchT: forMinchT: forNincht:n1=J * 10000+7000+m * 100+N e=[j,7, M,n]ifG (I,e) and(M * 100+n) *i/10000==10: PrintN1,i,n1*Ireturndefz68 ():#The number consists of 123456789, of which the first two are divisible by 2, 123 divisible by 3 , #the first n bits can be divisible by N, asking him how much PrintZz68 (9)defz63 ():" "reduced Restore ~ Pear-ara-----------------~ PEA The different letters represent different numbers." "T=range (0,10) forIinchT: forJinchT: forKinchT:a,b,c= 100+k * 10+i,1000+k * 100+i * 10+j,i * 100+j * + +Iifa==b-C:Print[A,b,c]defz64 ():" "multiplicative restore where a represents 0~9 the first five digits Z represents 0~9 after five digits ~ AZA * Aaz-----------------~ AAAA ~ Aazz ~ ZAA-----------------~ Zazaa" "g=LambdaY:"'. Join (Map (LambdaX:x>'4' and '0' or '1', str (y))) T=range (1,5) M=range (5,10) T1=filter (LambdaY:g (y) = ='101', Range (100,500)) forIinchT1: forJinchFilterLambdaY,x=i:g (y*x) = ='011', T): forKinchFilterLambdaY,x=i:g (y*x) = ="1100", T): forMminchFilterLambdaY,x=i:g (y*x) = ="1111", M): JJ=j *100+k *10+mmifG (jj*i) = ='01011': PrintI,JJreturndefz65 ():" "Multiply-Restore 2 ~ PPP * PP-----------~ PPPP ~ PPPP-------------~ ppppp 18 of them p The position is full of prime 2,3,5,7" " defg (n): t=str (n)returnLen (Filter (LambdaX:int (x)inch(2,3,5,7), t)) = =len (t) forIinchRange (222,778): forJinchRange (11,78): ifG (i) andG (j) andG (I*J) andG (J%10*i) andG (int (J/10) *i):Printi,j,i*Jif __name__=='__main__': S="" forIinchRange (58,69): S+='Z'+str (i) +'() \ n' exec(s)
Python Exercise 6