Python Time series Analysis

Source: Internet
Author: User
Tags timedelta

Pandas Generation Time Series:
Import pandas as Pdimport NumPy as NP
Time series
    • Timestamp (timestamp)
    • Fixed cycle (period)
    • Time interval (interval)

Date_range
    • You can specify a start time and a period
    • H: Hours
    • D: Day

M: Month

# Several ways to write the Times #2016 Jul 1; 7/1/2016; 1/7/2016; 2016-07-01; 2016/07/01rng = Pd.date_range (' 2016-07-01 ', periods = ten, freq = ' 3D ') #不传freq则默认是Drng

Results:

Datetimeindex (['2016-07-01','2016-07-04','2016-07-07','2016-07-10',               '2016-07-13','2016-07-16','2016-07-19','2016-07-22',               '2016-07-25','2016-07-28'], Dtype='Datetime64[ns]', freq='3D')
View Code
TIME=PD. Series (NP.RANDOM.RANDN),           Index=pd.date_range (Dt.datetime (2016,1,1), periods=20)) print (time) # Results: 2016-01-01   -0.1293792016-01-02    0.1644802016-01-03   -0.6391172016-01-04   -0.4272242016-01-05    2.0551332016-01-06    1.1160752016-01-07    0.3574262016-01-08    0.2742492016-01-09    0.8344052016-01-10   -0.0054442016-01-11   -0.1344092016-01-12    0.2493182016-01-13   - 0.2978422016-01-14   -0.1285142016-01-15    0.0636902016-01-16   -2.2460312016-01-17    0.3595522016-01-18    0.3830302016-01-19    0.4027172016-01-20   -0.694068freq:d, Dtype:float64
Truncate filtration
Time.truncate (before= ' 2016-1-10 ') #1月10之前的都被过滤掉了

Results:

2016-01-10   -0.0054442016-01-11   -0.1344092016-01-12    0.2493182016-01-13   -0.2978422016-01-14   -0.1285142016-01-15    0.0636902016-01-16   -2.2460312016-01-17    0.3595522016-01-18    0.3830302016-01-19    0.4027172016-01-20   -0.694068freq:d, Dtype:float64
View Code
Time.truncate (after= ' 2016-1-10 ') #1月10之后的都被过滤掉了 # Result: 2016-01-01   -0.1293792016-01-02    0.1644802016-01-03   -0.6391172016-01-04   -0.4272242016-01-05    2.0551332016-01-06    1.1160752016-01-07    0.3574262016-01-08    0.2742492016-01-09    0.8344052016-01-10   -0.005444freq:d, Dtype:float64

  

Print (time[' 2016-01-15 ')) #0.063690487247print (time[' 2016-01-15 ': ' 2016-01-20 ')) Results: 2016-01-15    0.0636902016-01-16   -2.2460312016-01-17    0.3595522016-01-18    0.3830302016-01-19    0.4027172016-01-20   -0.694068freq:d, Dtype:float64data=pd.date_range (' 2010-01-01 ', ' 2011-01-01 ', freq= ' M ') Print (data) #结果: Datetimeindex ([' 2010-01-31 ', ' 2010-02-28 ', ' 2010-03-31 ', ' 2010-04-30 ',               ' 2010-05-31 ', ' 2010-06-30 ', ' 2010-07-31 ', ' 2010-08-31 ',               ' 2010-09-30 ', ' 2010-10-31 ', ' 2010-11-30 ', ' 2010-12-31 ',              dtype= ' Datetime64[ns] ', freq= ' M ')

  

#时间戳pd. Timestamp (' 2016-07-10 ') #Timestamp (' 2016-07-10 00:00:00 ') # You can specify more detail PD. Timestamp (' 2016-07-10 ') #Timestamp (' 2016-07-10 10:00:00 ') PD. Timestamp (' 2016-07-10 10:15 ') #Timestamp (' 2016-07-10 10:15:00 ') # How much detail can you add?t = PD. Timestamp (' 2016-07-10 10:15 ') # time interval PD. Period (' 2016-01 ') #Period (' 2016-01 ', ' M ') PD. Period (' 2016-01-01 ') #Period (' 2016-01-01 ', ' D ') # time Offsetspd.timedelta (' 1 day ') #Timedelta (' 1 days 00:00:00 ') PD. Period (' 2016-01-01 10:10 ') + PD. Timedelta (' 1 day ') #Period (' 2016-01-02 10:10 ', ' T ') PD. Timestamp (' 2016-01-01 10:10 ') + PD. Timedelta (' 1 day ') #Timestamp (' 2016-01-02 10:10:00 ') PD. Timestamp (' 2016-01-01 10:10 ') + PD. Timedelta (' ns ') #Timestamp (' 2016-01-01 10:10:00.000000015 ') p1 = Pd.period_range (' 2016-01-01 10:10 ', freq = ' 25H ', periods = Ten) P2 = Pd.period_range (' 2016-01-01 10:10 ', freq = ' 1d1h ', periods = ten) p1p2 result: Periodindex ([' 2016-01-01 10:00 ',           ' 2016-01-02 11:00 ', ' 2016-01-03 12:00 ', ' 2016-01-04 13:00 ', ' 2016-01-05 14:00 ', ' 2016-01-06 15:00 ',  ' 2016-01-07 16:00 ', ' 2016-01-08 17:00 ', ' 2016-01-09 18:00 ', ' 2016-01-10 19:00 '], dtype= ' period[25 H] ', freq= ' 25H ') periodindex ([' 2016-01-01 10:00 ', ' 2016-01-02 11:00 ', ' 2016-01-03 12:00 ', ' 2016-01-04 13:00 ', '             2016-01-05 14:00 ', ' 2016-01-06 15:00 ', ' 2016-01-07 16:00 ', ' 2016-01-08 17:00 ', ' 2016-01-09 18:00 ', ' 2016-01-10 19:00 '], dtype= ' period[25h] ', freq= ' 25H ') # Specify Index RNG = Pd.date_range (' 1 ', periods = ten, fre Q = ' D ') rngpd. Series (Len (rng), index = RNG) results: 2016-07-01 02016-07-02 12016-07-03 22016-07-04 32016-07-05 42016-07- 52016-07-07 62016-07-08 72016-07-09 82016-07-10 9freq:d, dtype:int32periods = [PD. Period (' 2016-01 '), PD. Period (' 2016-02 '), PD. Period (' 2016-03 ')]ts = PD. Series (Np.random.randn (len (periods)), index = periods) TS Result: 2016-01-0.0158372016-02-0.9234632016-03-0.485212freq: M, Dtype:float64type (Ts.index) #pandas. core.indexes.period.periodindex# timestamps and time periods can beConvert ts = pd. Series (range), Pd.date_range (' 07-10-16-8:00am ', periods = ten, freq = ' H ')) TS results: 2016-07-10 08:00:00 02016-07-10 09:00:0    0 12016-07-10 10:00:00 22016-07-10 11:00:00 32016-07-10 12:00:00 42016-07-10 13:00:00 52016-07-10 14:00:00 62016-07-10 15:00:00 72016-07-10 16:00:00 82016-07-10 17:00:00 9freq:h, dtype:int32ts_period = Ts.to_period ( ) ts_period results: 2016-07-10 08:00 02016-07-10 09:00 12016-07-10 10:00 22016-07-10 11:00 32016-07-10 12:00 42016 -07-10 13:00 52016-07-10 62016-07-10 15:00 72016-07-10 16:00 82016-07-10 17:00 9freq:h, Dtype:int32 Difference between time period and timestamp ts_period[' 2016-07-10 08:30 ': ' 2016-07-10 11:45 '] #时间周期包含08:00 Results: 2016-07-10 08:00 02016-07-10 09:00 12016- 07-10 10:00am 22016-07-10 11:00am 3freq:h, dtype:int32ts[' 2016-07-10 08:30 ': ' 2016-07-10 11:45 '] #时间戳不包含08:30# results: 2016-0 7-10 09:00:00 12016-07-10 10:00:00 22016-07-10 11:00:00 3freq:h, Dtype:int32
Data resampling:
    • Time data is converted from one frequency to another frequency
    • Drop sampling
    • L Sampling
Import pandas as Pdimport numpy as Nprng = Pd.date_range (' 1/1/2011 ', periods=90, freq= ' D ') #数据按天ts = PD. Series (Len (RNG)), index=rng) Ts.head () results: 2011-01-01-1.0255622011-01-02 0.4108952011-01-03 0.660311 (NP.RANDOM.RANDN) 2011-01-04 0.7102932011-01-05 0.444985freq:d, dtype:float64ts.resample (' M '). SUM () #数据降采样, descending to the month, the indicator is summed, can also be averaged, the result is specified by itself: 20 11-01-31 2.5101022011-02-28 0.5832092011-03-31 2.749411freq:m, dtype:float64ts.resample (' 3D '). SUM () #数据降采样, down to 3 knots    Fruit: 2011-01-01 0.0456432011-01-04-2.2552062011-01-07 0.5711422011-01-10 0.8350322011-01-13-0.3967662011-01-16 -1.1562532011-01-19-1.2868842011-01-22 2.8839522011-01-25 1.5669082011-01-28 1.4355632011-01-31 0.311565   2011-02-03-2.5412352011-02-06 0.3170752011-02-09 1.5988772011-02-12-1.9505092011-02-15 2.9283122011-02-18 -0.7337152011-02-21 1.6748172011-02-24-2.0788722011-02-27 2.1723202011-03-02-2.0221042011-03-05-0.07035620 11-03-08 1.2766712011-03-11-2.8351322011-03-14-1.3841132011-03-17 1.5175652011-03-20-0.5504062011-03-23 0.7734302011-03-26 2.2443192011-03-29 2.951082freq:3d, dtype:float64day3ts = ts.resample (' 3D '). Mean () day3ts results: 2011-01-01 0.0152142011-01-04-0.7517352011 -01-07 0.1903812011-01-10 0.2783442011-01-13-0.1322552011-01-16-0.3854182011-01-19-0.4289612011-01-22 0. 9613172011-01-25 0.5223032011-01-28 0.4785212011-01-31 0.1038552011-02-03-0.8470782011-02-06 0.1056922011-0 2-09 0.5329592011-02-12-0.6501702011-02-15 0.9761042011-02-18-0.2445722011-02-21 0.5582722011-02-24-0.69 29572011-02-27 0.7241072011-03-02-0.6740352011-03-05-0.0234522011-03-08 0.4255572011-03-11-0.9450442011-03- 14-0.4613712011-03-17 0.5058552011-03-20-0.1834692011-03-23 0.2578102011-03-26 0.7481062011-03-29 0.9836 94freq:3d, Dtype:float64print (day3ts.resample (' D '). Asfreq ()) #升采样, to interpolate the result: 2011-01-01 0.0152142011-01-02 NaN201 1-01-03 nan2011-01-04-0.7517352011-01-05 nan2011-01-06 nan2011-01-07 0.1903812011-01-08 nan2011-01-09 nan2011-01-10 0.2783442011-01-11 nan2011-01-12 nan2011-01-13-0.1322552011-01-14 NaN2011-01         -15 nan2011-01-16-0.3854182011-01-17 nan2011-01-18 nan2011-01-19-0.4289612011-01-20 nan2011-01-21 nan2011-01-22 0.9613172011-01-23 nan2011-01-24 nan2011-01-25 0.5223032011-01-2   6 nan2011-01-27 nan2011-01-28 0.4785212011-01-29 nan2011-01-30 NaN ...   2011-02-28 nan2011-03-01 nan2011-03-02-0.6740352011-03-03 nan2011-03-04 nan2011-03-05 -0.0234522011-03-06 nan2011-03-07 nan2011-03-08 0.4255572011-03-09 nan2011-03-10 NaN2         011-03-11-0.9450442011-03-12 nan2011-03-13 nan2011-03-14-0.4613712011-03-15 nan2011-03-16 NAN2011-03-17 0.5058552011-03-18 nan2011-03-19 nan2011-03-20-0.1834692011-03-21 nan2011-03-22 nan2011-         03-23 0.2578102011-03-24 nan2011-03-25 nan2011-03-26 0.7481062011-03-27 nan2011-03-28 Nan2011-03-29 0.983694freq:d, length:88, Dtype:float64
Interpolation methods:
    • Ffill NULL to take the preceding value
    • Bfill NULL to take the following value
    • Interpolate linear value
Day3ts.resample (' D '). Ffill (1) Results: 2011-01-01 0.0152142011-01-02 0.0152142011-01-03 nan2011-01-04-0.75173520    11-01-05-0.7517352011-01-06 nan2011-01-07 0.1903812011-01-08 0.1903812011-01-09 NaN2011-01-10 0.2783442011-01-11 0.2783442011-01-12 nan2011-01-13-0.1322552011-01-14-0.1322552011-01-15 NaN2011         -01-16-0.3854182011-01-17-0.3854182011-01-18 nan2011-01-19-0.4289612011-01-20-0.4289612011-01-21 Nan2011-01-22 0.9613172011-01-23 0.9613172011-01-24 nan2011-01-25 0.5223032011-01-26 0.5223032011-0   1-27 nan2011-01-28 0.4785212011-01-29 0.4785212011-01-30 NaN ...   2011-02-28 0.7241072011-03-01 nan2011-03-02-0.6740352011-03-03-0.6740352011-03-04 NaN2011-03-05 -0.0234522011-03-06-0.0234522011-03-07 nan2011-03-08 0.4255572011-03-09 0.4255572011-03-10 NaN20 11-03-11-0.9450442011-03-12-0.9450442011-03-13 nan2011-03-14-0.4613712011-03-15-0.4613712011-03-16 nan2011-03-17 0.5058552011-03-18 0.5058552011-03-19 nan2011-03-20-0.1834692011-03-21-0.1834692011-03-22 nan2011-03-23 0.25781020    11-03-24 0.2578102011-03-25 nan2011-03-26 0.7481062011-03-27 0.7481062011-03-28 NaN2011-03-29 0.983694freq:d, length:88, Dtype:float64day3Ts.resample (' D '). Bfill (1) Results: 2011-01-01 0.0152142011-01-02 NaN201         1-01-03-0.7517352011-01-04-0.7517352011-01-05 nan2011-01-06 0.1903812011-01-07 0.1903812011-01-08 nan2011-01-09 0.2783442011-01-10 0.2783442011-01-11 nan2011-01-12-0.1322552011-01-13-0.1322552011- 01-14 NAN2011-01-15-0.3854182011-01-16-0.3854182011-01-17 nan2011-01-18-0.4289612011-01-19-0.4 289612011-01-20 nan2011-01-21 0.9613172011-01-22 0.9613172011-01-23 nan2011-01-24 0.5223032011-01 -25 0.5223032011-01-26 nan2011-01-27 0.4785212011-01-28 0.4785212011-01-29 nan2011-01-30 0.103855 ...   2011-02-28 nan2011-03-01-0.6740352011-03-02-0.6740352011-03-03 nan2011-03-04-0.0234522011-03-05 -0.0234522011-03-06 nan2011-03-07 0.4255572011-03-08 0.4255572011-03-09 nan2011-03-10-0.9450442    011-03-11-0.9450442011-03-12 nan2011-03-13-0.4613712011-03-14-0.4613712011-03-15 NaN2011-03-16 0.5058552011-03-17 0.5058552011-03-18 nan2011-03-19-0.1834692011-03-20-0.1834692011-03-21 NaN201         1-03-22 0.2578102011-03-23 0.2578102011-03-24 nan2011-03-25 0.7481062011-03-26 0.7481062011-03-27 Nan2011-03-28 0.9836942011-03-29 0.983694freq:d, length:88, Dtype:float64day3Ts.resample (' D '). Interpolate (' Li Near ') #线性拟合填充结果: 2011-01-01 0.0152142011-01-02-0.2404352011-01-03-0.4960852011-01-04-0.7517352011-01-05-0.43 76972011-01-06-0.1236582011-01-07 0.1903812011-01-08 0.2197022011-01-09 0.2490232011-01-10 0.2783442011-01-11 0.1414782011-01-12 0.0046112011-01-13-0.1322552011-01-14-0.2166432011-01-15-0.3010302011-01-16-0.3854182011-01-17-0.399932    2011-01-18-0.4144472011-01-19-0.4289612011-01-20 0.0344652011-01-21 0.4978912011-01-22 0.9613172011-01-23 0.8149792011-01-24 0.6686412011-01-25 0.5223032011-01-26 0.5077092011-01-27 0.4931152011-01-28 0.47852120   11-01-29 0.3536322011-01-30 0.228744 ...   2011-02-28 0.2580602011-03-01-0.2079882011-03-02-0.6740352011-03-03-0.4571742011-03-04-0.2403132011-03-05 -0.0234522011-03-06 0.1262182011-03-07 0.2758872011-03-08 0.4255572011-03-09-0.0313102011-03-10-0.48817720    11-03-11-0.9450442011-03-12-0.7838202011-03-13-0.6225952011-03-14-0.4613712011-03-15-0.1389622011-03-16 0.1834462011-03-17 0.5058552011-03-18 0.2760802011-03-19 0.0463062011-03-20-0.1834692011-03-21-0.0363762011-03-22 0.1107172011-03-23 0.2578102011-03-24 0.4212422011-03-25 0.5846 742011-03-26 0.7481062011-03-27 0.8266362011-03-28 0.9051652011-03-29 0.983694freq:d, length:88, Dtype:floa T64
Pandas sliding window:

The sliding window is the ability to frame the time series according to the specified unit length, thus calculating the statistical indicators within the box. The equivalent of a length specified slider on the scale slide, each slide a unit to feedback the data within the slider.

Sliding windows can make the data more stable, the floating range will be relatively small, representative, a separate data may be more or less out of the group, there are differences or errors, using sliding window will be more normative.

%matplotlib Inline import matplotlib.pylabimport numpy as Npimport pandas as Pddf = PD. Series (NP.RANDOM.RANDN), index = Pd.date_range (' 7/1/2016 ', freq = ' D ', periods = +)) Df.head () Result: 2016-07-01-0.1921 402016-07-02 0.3579532016-07-03-0.2018472016-07-04-0.3722302016-07-05 1.414753freq:d, dtype:float64r = df.ro lling (window = ten) r#rolling [window=10,center=false,axis=0] #r. Max, R.median, R.STD, R.skew tilt, r.sum, R.varprint ( R.mean ()) Result: 2016-07-01 nan2016-07-02 nan2016-07-03 nan2016-07-04 nan2016-07-05 NaN    2016-07-06 nan2016-07-07 nan2016-07-08 nan2016-07-09 nan2016-07-10 0.3001332016-07-11 0.2847802016-07-12 0.2528312016-07-13 0.2206992016-07-14 0.1671372016-07-15 0.0185932016-07-16-0.06141420 16-07-17-0.1345932016-07-18-0.1533332016-07-19-0.2189282016-07-20-0.1694262016-07-21-0.2197472016-07-22- 0.1812662016-07-23-0.1736742016-07-24-0.1306292016-07-25-0.1667302016-07-26-0.2330442016-07-27-0.2566422016-07-28-0.2807382016-07-29-0.2898932016-07-30-0.379625   ...   2018-01-22-0.2114672018-01-23 0.0349962018-01-24-0.1059102018-01-25-0.1457742018-01-26-0.0893202018-01-27 -0.1643702018-01-28-0.1108922018-01-29-0.2057862018-01-30-0.1011622018-01-31-0.0347602018-02-01 0.22933320 18-02-02 0.0437412018-02-03 0.0528372018-02-04 0.0577462018-02-05-0.0714012018-02-06-0.0111532018-02-07- 0.0457372018-02-08-0.0219832018-02-09-0.1967152018-02-10-0.0637212018-02-11-0.2894522018-02-12-0.0509462018 -02-13-0.0470142018-02-14 0.0487542018-02-15 0.1439492018-02-16 0.4248232018-02-17 0.3618782018-02-18 0. 3632352018-02-19 0.5174362018-02-20 0.368020freq:d, length:600, Dtype:float64import Matplotlib.pyplot as PLT%MATP Lotlib inlineplt.figure (figsize= (5)) Df.plot (style= ' r--') df.rolling (window=10). mean (). Plot (style= ' B ') #< Matplotlib.axes._subpLots. Axessubplot at 0x249627fb6d8>

Results:

Data stationarity and Difference method:

Second-order difference is to make the first order difference on the basis of first difference.

Correlation function Evaluation Method:

Python Time series Analysis

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.