Python Machine Learning

Source: Internet
Author: User

Chapter 3: A Tour of the machine learning classifiers Using Scikit-learn

3.1:training a perceptron via Scikit-learn

From Sklearn import Datasetsimport numpy as Npiris = Datasets.load_iris () X = iris.data[:, [2, 3]]y = Iris.targetnp.unique ( Y) from sklearn.cross_validation import train_test_split# randomly extracts a sample of 30% from 150 samples as Test_datax_train, X_test, Y_train, Y_ Test = Train_test_split (x,y,test_size=0.3, random_state=0) #数据归一化 #standardscaler estimated the parametersμ (sample mean ) and (Standard deviation) # (X-mean)/(standard deviation) from sklearn.preprocessing import STANDARDSCALERSC = STANDARDSC Aler () Sc.fit (x_train) x_train_std = Sc.transform (x_train) x_test_std = Sc.transform (x_test) #Perceptron分类 #eta0 is Equivalent to the Learning ratefrom sklearn.linear_model Import perceptronppn = Perceptron (n_iter=40, eta0=0.1, Random_st ate=0) Ppn.fit (X_TRAIN_STD, y_train) y_pred = ppn.predict (X_TEST_STD) #y_test! = y_pred ' Array ([False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False , False, False, False, False, False, False, False, False,       False, True, False, False, False, False, False, False, True, False, True, False, False, False, False, Fals E, False, false]) "Print (' misclassified samples:%d '% (y_test! = y_pred). SUM ()) #Misclassified Samples:4#thus, the MISCL Assification error on the test datasets is 0.089 or 8.9 percent (4/45) #the metrics module:performance Metricsfrom sklearn.m Etrics Import accuracy_scoreprint (' accuracy:%.2f '% Accuracy_score (y_test, y_pred)) #Accuracy: 0.91#plot_decision_ Regions:visualize How well it separates the different flower Samplesfrom matplotlib.colors import Listedcolormapimport Mat Plotlib.pyplot as Pltdef plot_decision_regions (X, y, classifier, Test_idx=none, resolution=0.02): #setup marker Gener      Ator and Color Map markers = (' s ', ' x ', ' o ', ' ^ ', ' V ') colors = (' red ', ' blue ', ' lightgreen ', ' black ', ' cyan ')  CMap = Listedcolormap (Colors[:len (Np.unique (y))) # Plot The decision surface x1_min, X1_max = x[:, 0].min () -1, x[:, 0].max () + 1 X2_miN, X2_max = x[:, 1].min ()-1, x[:, 1].max () + 1 xx1, xx2 = Np.meshgrid (Np.arange (X1_min, X1_max, resolution), Np.aran GE (X2_min, X2_max, resolution)) Z = Classifier.predict (Np.array ([Xx1.ravel (), Xx2.ravel ()]).      T) Z = Z.reshape (xx1.shape) Plt.contourf (xx1, xx2, Z, alpha=0.4, Cmap=cmap) Plt.xlim (Xx1.min (), Xx1.max ()) Plt.ylim (Xx2.min (), Xx2.max ()) # Plot all samples for IDX, C1 in enumerate (Np.unique (y)): Print      Idx,c1 Plt.scatter (X=x[y = = C1, 0], Y=x[y = = C1, 1], alpha=0.8, C=cmap (IDX), MARKER=MARKERS[IDX],LABEL=C1) #highlight test Samples If test_idx:x_test, Y_test = X[test_idx,:], Y[test_idx] #把 corlor settings NULL, controlled by edgecolors color Plt.scatter (x_test[:, 0],x_test[:, 1], color= ", edgecolors= ' black ', alpha=1.0, linewidths= 2, marker= ' O ', s=150, label= ' Test set ') X_COMBINED_STD = Np.vstack ((x_train_std, x_test_std)) y_combined = Np.hst Ack ((Y_train, Y_test)) plot_decision_regions (X=x_cOMBINED_STD, y=y_combined, Classifier=ppn, Test_idx=range (105,150)) Plt.xlabel (' petal length [standardized] ') Plt.ylabel (' petal width [standardized] ') plt.legend (loc= ' upper left ') plt.show ()

Python Machine Learning

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.