Python Pandas read data, write to file

Source: Internet
Author: User

Pandas Select Data Iloc and LOC are not used the same way, Iloc is based on the index, LOC is based on the value of the row

>>> import pandas as pd>>> import os>>> os.chdir ("d:\\") >>> d = pd.read_csv ("Gwas_water.qassoc", delimiter=  "\s+") >> > d.loc[1:3]   CHR SNP   BP  NMISS     BETA      SE       R2       t       p1    1   .   447     44  0.1800  0.1783  0.02369   1.009  0.31852    1   .  449      44  0.2785  0.2473  0.02931  1.126  0.26653     1   .  452     44  0.1800   0.1783  0.02369  1.009  0.3185>>> d.loc[0:3]   chr snp    BP  NMISS    BETA      SE        R2      T        P0    1   .  410     44   0.2157  0.1772  0.03406  1.217  0.23041    1    .  447     44  0.1800  0.1783   0.02369  1.009  0.31852    1   .  449      44  0.2785  0.2473  0.02931  1.126   0.26653    1   .  452     44   0.1800  0.1783  0.02369  1.009  0.3185>>> d.iloc[0:3]   CHR  Snp   bp  nmiss    beta      se        R2      T        P0    1   .  410      44  0.2157  0.1772  0.03406  1.217  0.23041     1   .  447     44  0.1800   0.1783  0.02369  1.009  0.31852    1   .   449     44  0.2785  0.2473  0.02931   1.126  0.2665>>> d.iloc[1:3,2]1    4472     449name: bp, dtype: int64>>> d.iloc[0:3,2]0    4101    4472     449name: bp, dtype: int64>>> d.head ()    CHR SNP    BP  NMISS    BETA      SE        R2       T        P0    1   .  410      44  0.2157  0.1772  0.03406  1.2170  0.23041     1   .  447     44  0.1800   0.1783  0.02369  1.0090  0.31852    1   .   449     44  0.2785  0.2473  0.02931   1.1260  0.26653    1   .  452     44  0.1800   0.1783  0.02369  1.0090  0.31854    1    .  462     44  0.2548  0.2744   0.02012  0.9286  0.3584>>> d.tail (3)          CHR SNP        BP  NMISS     BETA      SE       R2        t      p418704   12   .   19345588     44 -0.2207  0.2558  0.01743 - 0.8631  0.393418705   12   .  19345598      44 -0.2207  0.2558  0.01743 -0.8631  0.393418706   12   .   19345611     44 -0.2207  0.2558  0.01743 - 0.8631  0.393>>> d.describe ()                   CHR             BP     NMISS           BETA            SE  count   418707.000000  4.187070e+05  418707.0  4.186820e+05   418682.00000mean        5.805738  1.442822e+07       44.0 -4.271777e-03       0.21433std          3.392930  8.933882e+06       0.0  2.330019e-01        0.05190min          1.000000  4.100000e+02      44.0 -1.610000e+00        0.1013025%         3.000000   7.345860e+06      44.0 -1.638000e-01        0.1732050%         5.000000  1.371612e+07       44.0 -1.826000e-16       0.2067075%          9.000000  2.051322e+07       44.0  1.391000e-01       0.25010max         12.000000  4.238896e+07      44.0  1.467000e+00        0.67580                   R2              T             Pcount   418682.000000  4.186820e+05  4.186820e+05mean         0.026268 -1.910774e-02  4.772397e-01std          0.035903  1.095115e+00  2.944290e-01min          0.000000 -5.582000e+00  2.034000e-0825%          0.002969 -7.955000e-01  2.179000e-0150%          0.012930 -8.468000e-16  4.624000e-0175%         0.035910   6.712000e-01  7.254000e-01max         0.531200   6.898000e+00  1.000000e+00>>> d.sort_values (by= "P") .iloc[0:15]         chr snp        bp  nmiss     BETA      SE      R2       T              P42870     1   .  32316680     44   1.1870  0.1721  0.5312  6.898  2.034000e-0829301      1   .  22184568     44   1.1870  0.1721  0.5312  6.898  2.034000e-0829302     1    .  22184590     44  1.1870  0.1721   0.5312  6.898  2.034000e-0829306     1   .   22184654     44  1.1870  0.1721  0.5312   6.898  2.034000e-0829305     1   .  22184628      44  1.1870  0.1721  0.5312  6.898   2.034000e-0829304     1   .  22184624      44  1.1870  0.1721  0.5312  6.898   2.034000e-08112212    3   .  14365699      44  1.4670  0.2255  0.5018  6.504  7.490000e-0829254     1    .  22167448     44  1.0780  0.1723   0.4822  6.254  1.713000e-0769291     2   .    9480651     44  1.1140  0.1829   0.4690  6.091  2.939000e-0729299     1   .   22180991     44  0.8527  0.1458  0.4488   5.848  6.574000e-07101391    3   .   6959715      44  0.6782  0.1166  0.4462  5.817   7.285000e-0729333     1   .  22198267      44  0.9252  0.1616  0.4383  5.724  9.888000e-07195513    5    .  20178388     44  1.0350  0.1817   0.4359  5.697  1.082000e-0629295     1    .  22180901     44  0.7469  0.1320   0.4324  5.657  1.236000e-0629300     1   .   22181119     44  0.7469  0.1320  0.4324   5.657  1.236000e-06>>> sort_d = d.sort_values (by= "P") .iloc[0:5]> >> m_d = d.dropna ()            # Remove na>>> sort_c = d.sort_values (["P", "CHR",  "BP"]) >>> sort _c.to_csv (file_name, sep= '\ t ',  encoding= ' Utf-8 ') >>> d.sort_values (by= "C",  ascending=true) >>> sort_ D.to_csv ("Result.txt", sep=  " ") >>> sort_d.to_csv ("Result_no_index.txt",  sep =  " ",  index=false) >>>


Reference:

For M, I in Enumerate (list (range (1,10))): For N, J in Enumerate (list (m+1,10)): Print I * j


Http://stackoverflow.com/questions/25943208/using-pandas-read-csv-on-an-open-file-twice


Https://github.com/lijin-THU/notes-python



This article is from the "R and Python apps" blog, so be sure to keep this source http://matrix6ro.blog.51cto.com/1746429/1891793

Python Pandas read data, write to file

Related Article

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.