In certain dc/dc-converter applications, on-chip, cycle-by-cycle current limit could be insufficient protection to prevent a Failure during a short circuit. A nonsynchronous boost converter provides a direct path from the input to the short circuit through the inductor and the C Atch diode. Regardless of Current-limit Protection in the IC, when a short circuit exists in the load, extremely high currents that FL ow through the load path can damage the catch diode, the inductor, and the IC. In a SEPIC (single-ended, primary-inductance-converter) circuit, the coupling capacitor breaks this path. Thus, when a short circuit exists in the load, no-direct path exists for current-to-flow from input to output. However, if the required minimum on-time is less than the application-specific duty cycle, the inductor and, thus, the SWI Tch current can rapidly increase, causing IC failure, input-supply overload, or both. Even in certain buck-regulator applications, duty-cycle limitations sometimes keep the switch on too long to maintain control during a output short-circuit condition, especially at very high input voltage W ith extremely high-frequency ICs. A single-transistor Approach protects the SEPIC circuit from short-circuit fault conditions by pulling down the Vc pin (the output of the error amplifier) when the inductor current starts to run away Dur ing an overload or short circuit in the load (Figure 1).
Pulling the VC pin low forces the IC to stop switching, skipping minimum on-time switch cycles, and allowing the Curre NT in each inductor to ramp down. During A short circuit, the peak current in L1, which decreases because of the limited number of switch cycles, and th E Peak Current in L2 sum-to-equal the peak current in the switch, which are less than the 1.5A limit of the Lt1961em s8e. Figure 2 shows the short-circuit input and output currents at different input voltages. Figure 3 shows the maximum load current versus input voltage. The average current in L 2 are equal to the load current and area maximum of the under all load conditions. If the sense resistor sees, it knows, a overload condition have occurred and tells the transistor to protect th E circuit.
Single transistor provides short-circuit protection