Merge sort is a divide-and-conquer algorithm. Merge (merge) sorting method is to combine two (or more than two) ordered tables into a new ordered table, that is, the ordered sequence is divided into several ordered sub-sequences, and then the ordered sub-sequence is merged into a whole ordered sequence. The Merg () function is used to merge two ordered arrays. is the key to the entire algorithm. Look at the description of the MergeSort function in the following description:
mergesort (arr[], L, > l 1. Find the middle point and say arr is divided into two parts:= (l+r)/2 2. Call mergesort (arr, L, m) for part of MergeSort:3. Call MergeSort for the second part: Calls mergesort (arr, M+1, R )4. Merge these two parts: Call merge (arr, L, M, R)
From Wikipedia, shows the complete merge sort process. For example, the array {38, 27, 43, 3, 9, 82, 10}.
The following is the implementation of the C program:
1#include <stdlib.h>2#include <stdio.h>3 4 /*Merge the left and right parts of arr: Arr[l. M] and ARR[M+1..R]*/5 voidMergeintArr[],intLintMintR)6 {7 intI, J, K;8 intN1 = M-l +1;9 intN2 = R-m;Ten One /*Create temp Arrays*/ A intl[n1], r[n2]; - - /*copy data to l[] and r[]*/ the for(i =0; I < N1; i++) -L[i] = arr[l +i]; - for(j =0; J <= N2; J + +) -R[J] = arr[m +1+j]; + - /*merge the two parts into the arr[l. R]*/ +i =0; Aj =0; atK =l; - while(I < N1 && J <n2) - { - if(L[i] <=R[j]) - { -ARR[K] =L[i]; ini++; - } to Else + { -ARR[K] =R[j]; theJ + +; * } $k++;Panax Notoginseng } - the /*Copy the rest of the section l[]*/ + while(I <N1) A { theARR[K] =L[i]; +i++; -k++; $ } $ - /*Copy the rest of the section r[]*/ - while(J <n2) the { -ARR[K] =R[j];WuyiJ + +; thek++; - } Wu } - About /*sort data arr, from L to R*/ $ voidMergeSort (intArr[],intLintR) - { - if(L <R) - { A intm = L + (r-l)/2;//and (L+r)/2, but can avoid overflow in L and r large + mergesort (arr, L, m); theMergeSort (arr, m+1, R); - merge (arr, L, M, R); $ } the } the the voidPrintArray (intA[],intsize) the { - inti; in for(i=0; i < size; i++) theprintf"%d", A[i]); theprintf"\ n"); About } the the /*Test Program*/ the intMain () + { - intArr[] = { A, One, -,5,6,7}; the intArr_size =sizeof(arr)/sizeof(arr[0]);Bayi theprintf"Given array is \ n"); the PrintArray (arr, arr_size); - -MergeSort (arr,0, Arr_size-1); the theprintf"\nsorted array is \ n"); the PrintArray (arr, arr_size); the return 0; -}
Time complexity: O (NLOGN) spatial complexity: O (n) stable sequencing
Application of merge Sort:
1) sort the linked list. Other sorting algorithms such as heap sorting and quick sort cannot sort the list. Reference: Sorting a linked list using merge sort
2) calculates the inverse pairs in an array. Sword Point Offer (09)-Reverse order in the array [Divide and conquer]
3) out of order.
Sorting and finding (5)-merge sort