1. libfm
Project home: http://www.libfm.org/
2. svdfeature
Project home: http://apex.sjtu.edu.cn/apex_wiki/svdfeature
3. libsvm and liblinear
Libsvm project home page: http://www.csie.ntu.edu.tw /~ Cjlin/libsvm/
Liblinear project home page: http://www.csie.ntu.edu.tw /~ Cjlin/liblinear/
Required for first use: Practical Guide
Libsvm development experience by Lin zhiren: http://www.csie.ntu.edu.tw /~ Cjlin/talks/kdd.pdf
4. RT-rank
Project homepage: http://research.engineering.wustl.edu /~ Amohan/
RT-rank provides the following methods: Random forests and gradient boosted demo-trees, which are common in recommendation systems.
3. mahout
Project home: http://mahout.apache.org/
4. mymedialist
Project home: http://www.ismll.uni-hildesheim.de/mymedialite/
4. graphlab and graphchi
Graphlab project home: http://graphlab.org/
Graphchi project home: http://graphlab.org/graphchi/
Graphchi: https://code.google.com/p/graphchi/downloads/detail? Name1_graphchi_src_v0.1.2_toolkits.tar.gz
Graphchi Introduction: http://www.technologyreview.com/news/428497/your-laptop-can-now-analyze-big-data? Nlid = nldly & NLD = 2012-07-17
CF for graphchi: http://bickson.blogspot.com/2012/08/collaborative-filtering-with-graphchi.html