Development of hyper-pixel Segmentation technology(SuperpixelSegmentation)
Sason @ csdn
Current update date: 2013.05.12.
1. Graph-based algorithms ):
1. Normalized cuts, 2000.
Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and machine intelligence (PAMI), 22 (8): 888-905,200 0.
T. Cour, F. benezit, and J. Shi. spectral segmentation with multiscale Graph Decomposition. in IEEE Computer Vision and pattern recognition (cvpr) 2005,200 5.
2. Graph-based segmentation, 2004.
Pedro felzenszwalb and Daniel hutenlocher. EF extends cient graph-basedimage segmentation. International Journal of Computer Vision (ijcv), 59 (2): 167-181, September 2004.
3. Graph Cuts method, 2008.
Alastair Moore, Simon Prince, Jonathan warrell, Umar Mohammed, andgraham Jones. superpixel lattices. IEEE Computer Vision and patternrecognition (cvpr), 2008.
4. gca10 and gcb10, 2010.
O. Veksler, Y. boykov, and P. mehrani. superpixels and supervoxels in an Energy Optimization Framework. In European Conference on Computer Vision (eccv), 2010.
5. Entropy Rate superpixel segmentation,2011.
Ming-yu Liu, tuzel, O., Ramalingam, S., chellappa, R., Entropy Rate superpixel segmentation, CVPR, 2011.
Ii. Gradient-ascent-based algorithms ):
1. Watershed, 1991.
Luc Vincent and Pierre Soille. watersheds in digital spaces: an EF effeccient Algorithm Based on Immersion simulations. IEEE Transactions on pattern analalysis and machine intelligence, 13 (6): 583-598,199 1.
2. Mean Shift, 2002.
D. comaniciu and P. Meer. Mean Shift: a robust approach toward featurespace analysis. IEEE Transactions on Pattern Analysis and machineintelligence, 24 (5): 603-619, May 2002.
3. Quick shift, 2008
A. vedaldi and S. soatto. Quick shift and Kernel Methods for mode seeking. In European Conference on Computer Vision (eccv), 2008.
4. turbopixel, 2009.
A. levinshtein,. stere, K. kutulakos, D. fleet, S. dickinson, and K. siddiqi. turbopixels: Fast superpixels using geometric fl OWS. ieeetransactions on Pattern Analysis and machine intelligence (PAMI), 2009.
Image matting, Alpha matting, and video matting-Topic 1
Http://blog.csdn.net/anshan1984/article/details/8581225
View the development of image/visual significance detection technology (saliency detection and Visual Attention) -- computer vision Topic 2
Http://blog.csdn.net/anshan1984/article/details/8657176
Superpixel segmentation-Topic 3 of Computer Vision
Http://blog.csdn.net/anshan1984/article/details/8918167
Welcome to my csdn blog:Http://blog.csdn.net/anshan1984/